等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y216x的準(zhǔn)線交于AB兩點(diǎn),|AB|4,則C的實(shí)軸長(zhǎng)為(  )

A. B2 C4 D8

 

C

【解析】設(shè)C1.

拋物線y216x的準(zhǔn)線為x=-4聯(lián)立1x=-4A(4,)B(4,-)

|AB|2 4,a2,2a4.

C的實(shí)軸長(zhǎng)為4.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-4練習(xí)卷(解析版) 題型:解答題

在直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為 (φ為參數(shù),a>b>0),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l與圓O的極坐標(biāo)方程分別為ρsin(θ)m(m為非零數(shù))ρb.若直線l經(jīng)過(guò)橢圓C的焦點(diǎn),且與圓O相切,求橢圓C的離心率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-2練習(xí)卷(解析版) 題型:解答題

一個(gè)盒子里裝有7張卡片,其中有紅色卡片4張,編號(hào)分別為1,2,3,4;白色卡片3張,編號(hào)分別為2,3,4.從盒子中任取4張卡片(假設(shè)取到任何一張卡片的可能性相同)

(1)求取出的4張卡片中,含有編號(hào)為3的卡片的概率;

(2)在取出的4張卡片中,紅色卡片編號(hào)的最大值設(shè)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-1練習(xí)卷(解析版) 題型:選擇題

設(shè)m為正整數(shù),(xy)2m展開(kāi)式的二項(xiàng)式系數(shù)的最大值為a,(xy)2m1展開(kāi)式的二項(xiàng)式系數(shù)的最大值為b,若13a7b,則m等于(  )

A5 B6 C7 D8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-3練習(xí)卷(解析版) 題型:填空題

設(shè)F為拋物線Cy24x的焦點(diǎn),過(guò)點(diǎn)P(1,0)的直線l交拋物線CA、B兩點(diǎn),點(diǎn)Q為線段AB的中點(diǎn),若|FQ|2,則直線l的斜率等于________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-2練習(xí)卷(解析版) 題型:填空題

橢圓T1(a>b>0)的左,右焦點(diǎn)分別為F1,F2,焦距為2c.若直線y (xc)與橢圓T的一個(gè)交點(diǎn)M滿足MF1F22MF2F1,則該橢圓的離心率等于________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-2練習(xí)卷(解析版) 題型:選擇題

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為F(3,0),離心率等于,則C的方程是(  )

A.1 B.1

C. 1 D. 1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-3練習(xí)卷(解析版) 題型:填空題

在正方體ABCDA1B1C1D1中,MN分別是棱CD,CC1的中點(diǎn),則異面直線A1MDN所成的角的大小是________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-4-1練習(xí)卷(解析版) 題型:解答題

設(shè){an}是公比不為1的等比數(shù)列,其前n項(xiàng)和為Sn,且a5,a3,a4成等差數(shù)列.

(1)求數(shù)列{an}的公比;

(2)證明:對(duì)任意kN*,Sk2,Sk,Sk1成等差數(shù)列.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案