【題目】我國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一直角邊為股,斜邊為弦.若a,b,c為直角三角形的三邊,其中c為斜邊,則a2+b2=c2,稱這個定理為勾股定理.現(xiàn)將這一定理推廣到立體幾何中:在四面體O-ABC中,∠AOB=∠BOC=∠COA=90°,S為頂點O所對面的面積,S1,S2,S3分別為側面△OAB,△OAC,△OBC的面積,則下列選項中對于S,S1,S2,S3滿足的關系描述正確的為( )
A. S2=S+S+S B.
C. S=S1+S2+S3 D.
科目:高中數(shù)學 來源: 題型:
【題目】下面四個推理中,屬于演繹推理的是( 。
A. 觀察下列各式:72=49,73=343,74=2401,…,則72015的末兩位數(shù)字為43
B. 觀察,可得偶函數(shù)的導函數(shù)為奇函數(shù)
C. 在平面上,若兩個正三角形的邊長比為1:2,則它們的面積比為1:4,類似的,在空間中,若兩個正四面體的棱長比為1:2,則它們的體積之比為1:8
D. 已知堿金屬都能與水發(fā)生還原反應,鈉為堿金屬,所以鈉能與水發(fā)生反應
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動點P到定點F(0,1)的距離比它到直線的距離小1,設動點P的軌跡為曲線C,過點F的直線交曲線C于A、B兩個不同的點,過點A、B分別作曲線C的切線,且二者相交于點M.
(Ⅰ)求曲線C的方程;
(Ⅱ)求證: ;
(Ⅲ)求△ABM的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的發(fā)展,某城市的市民收入逐年增長,表1是該城市某銀行連續(xù)五年的儲蓄存款額(年底余額):
表1
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款額y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將表1的數(shù)據(jù)進行了處理,令t=x-2 010,z=y-5,得到表2:
表2
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)z關于t的線性回歸方程是________;y關于x的線性回歸方程是________;
(2)用所求回歸方程預測到2020年年底,該銀行儲蓄存款額可達________千億元.
(附:線性回歸方程=x+,其中=,=-)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題分)
如圖, 和所在的平面互相垂直,且, .
(Ⅰ)求證: .
(Ⅱ)求直線與面所成角的大小的正弦值.
(Ⅲ)求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù), ).
(1)討論函數(shù)的單調(diào)性;
(2)當函數(shù)有兩個零點時,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的上、下、左、右四個頂點分別為x軸正半軸上的某點滿足.
(1)求橢圓的方程;
(2)設該橢圓的左、右焦點分別為,點在圓上,且在第一象限,過作圓的切線交橢圓于,求證:△的周長是定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com