下列各組中,兩個(gè)集合相等的是(  )
A、M={(1,2)},N={(2,1)}
B、M={1,2},N={(1,2)}
C、M={x|x=2k+1,k∈Z},N={x|x=2k-1,k∈Z}
D、M={(x,y)|
y-1
x-2
=1},N={(x,y)|y-1=x-2}
考點(diǎn):集合的相等
專題:集合
分析:根據(jù)集合相等的概念,逐一判斷四個(gè)答案中的集合元素是否一一對(duì)應(yīng)相等,可得答案.
解答: 解:A中,M={(1,2)},N={(2,1)},M≠N;
B中,M={1,2},N={(1,2)},M≠N;
C中,M={x|x=2k+1,k∈Z}表示全體奇數(shù)集合,N={x|2k-1,k∈Z}也表示全體奇數(shù)集合,故M=N,
D中,M={(x,y)|
y-1
x-2
=1}={(x,y)|y-1=x-2,x≠2},N={(x,y)|y-1=x-2},M≠N;
故選C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是集合的相等,正確理解集合相等的概念,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l垂直于直線2x-3y+5=0,則直線l的一個(gè)法向量
n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={0,1,2}的子集為( 。
A、{0},{1},{2}
B、{0},{1},{2},{1,2}
C、{0},{1},{2},{1,2}
D、{0},{1},{2},{1,2},{0,1},{0,2},{0,1,2},∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若f(x)=ax2+2x+1只有一個(gè)零點(diǎn),則a=1;
③若lga+lgb=lg(a+b),則a+b的最小值為4;④對(duì)于任意實(shí)數(shù)x,有f(-x)=f(x),g(-x)=-g(x),且當(dāng)x>0時(shí),f′(x)>0,g′(x)>0,則當(dāng)x<0時(shí),f′(x)>g′(x),
其中正確的命題有
 
(填所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=-x2+ax-
a
4
+
1
2
在區(qū)間[0,1]上的最大值是g(a)
(1)寫出g(x)的函數(shù)表達(dá)式;
(2)求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,求2sinαcosα-3cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):(1+
3
tan15°
1-sin215°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(sin2θ,cosθ),
b
=(cosθ,1),則“
a
b
”是“tanθ=
1
2
”成立的
 
條件 (選填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,1)上單調(diào)遞減的函數(shù)為(  )
A、y=
1
x
B、y=lnx
C、y=cosx
D、y=x2

查看答案和解析>>

同步練習(xí)冊(cè)答案