若拋物線y
2=4x的焦點是F準(zhǔn)線是l,則過點F和點M(4,4)且與準(zhǔn)線l相切的圓有( )
:拋物線y2=4x的焦參數(shù)p=2,所以F(1,0),直線l:x=-1,即x+1=0,
設(shè)經(jīng)過點M(4,4)、F(1,0),且與直線l相切的圓的圓心為Q(g,h),
則半徑為Q到,l的距離,即1+g,所以圓的方程為(x-g)2+(y-h)2=(1+g)2,
將M、F的坐標(biāo)代入,得(4-g)2+(4-h)2=(1+g)2,(1-g)2+(0-h)2=(1+g)2,
即h2-8h+1=10g①,
h2=4g②,②代入①,
得3h2+16h-2=0,解得h有兩個解,那惡魔對應(yīng)的g有兩解,因此圓有2個,選C
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知頂點在坐標(biāo)原點,焦點在
軸正半軸的拋物線上有一點
,
點到拋物線焦點的距離為1.(1)求該拋物線的方程;(2)設(shè)
為拋物線上的一個定點,過
作拋物線的兩條互相垂直的弦
,
,求證:
恒過定點
.(3)直線
與拋物線交于
,
兩點,在拋物線上是否存在點
,使得△
為以
為斜邊的直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線
的焦點坐標(biāo)為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知P為曲線C上任一點,若P到點F
的距離與P到直線
距離相等
(1)求曲線C的方程;
(2)若過點(1,0)的直線l與曲線C交于不同兩點A、B,
(I)若
,求直線l的方程;
(II)試問在x軸上是否存在定點E(a,0),使
恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過拋物線
上的點M(
)的切線的傾斜角為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,已知拋物線
,過點
作拋物線
的弦
,
.
(Ⅰ)若
,證明直線
過定點,并求出定點的坐標(biāo);
(Ⅱ)假設(shè)直線
過點
,請問是否存在以
為底邊的等腰三角形
? 若存在,求出
的個數(shù)?如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)拋物線
的準(zhǔn)線為
,
為拋物線上的點,
,垂足為
,若
得面積與
的面積之比為
,則
點坐標(biāo)是
.
查看答案和解析>>