【題目】已知函數(shù)f(x)是奇函數(shù):當(dāng)x>0時,f(x)=x(1﹣x);則當(dāng)x<0時,f(x)=(
A.f(x)=﹣x(1﹣x)
B.f(x)=x(1+x)
C.f(x)=﹣x(1+x)
D.f(x)=x(1﹣x)

【答案】B
【解析】解:設(shè)x<0,則﹣x>0,
∵當(dāng)x>0時,f(x)=x(﹣x+1),
∴f(﹣x)=﹣x(x+1)
又∵f(x)是定義在R上的奇函數(shù),
∴f(x)=﹣f(﹣x)=x(x+1)
故選B.
【考點(diǎn)精析】掌握函數(shù)奇偶性的性質(zhì)是解答本題的根本,需要知道在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若AB,AC,B={0,1,2,3,4,5,6},C={0,2,4,6,8,10},則這樣的A的個數(shù)為(
A.4
B.15
C.16
D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合U={x|1≤x≤7},A={x|2≤x≤5},B={x|3≤x≤7},求:
(1)A∩B;
(2)(UA)∪B;
(3)A∩(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時,xn+yn能被x+y整除”,第二步歸納假設(shè)應(yīng)寫成(
A.假設(shè)n=2k+1(k∈N*)正確,再推n=2k+3正確
B.假設(shè)n=2k﹣1(k∈N*)正確,再推n=2k+1正確
C.假設(shè)n=k(k∈N*)正確,再推n=k+1正確
D.假設(shè)n=k(k≥1)正確,再推n=k+2正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)一起去向老師詢問成語競賽的成績,老師說,你們四人中有2位優(yōu)秀,2位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績,看后甲對大家說:我還是不知道我的成績,根據(jù)以上信息,則( )
A.乙可以知道兩人的成績
B.丁可能知道兩人的成績
C.乙、丁可以知道對方的成績
D.乙、丁可以知道自己的成績

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線y=xex+1在點(diǎn)(1,e+1)處的切線方程是(
A.2ex﹣y﹣e+1=0
B.2ey﹣x+e+1=0
C.2ex+y﹣e+1=0
D.2ey+x﹣e+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A={﹣1,0},B={0,1},C={1,2},則(A∩B)∪C等于(
A.
B.{1}
C.{0,1,2}
D.{﹣1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時,f(x)=x2+x,則f(﹣3)的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三某班課外演講小組有四位男生三位女生,從中選出3位男生,2位女生,然后5人在班內(nèi)逐個進(jìn)行演講,則2位女生不連續(xù)演講的方式有(
A.864種
B.432種
C.288種
D.144種

查看答案和解析>>

同步練習(xí)冊答案