設(shè)函數(shù)
(1)若,求曲線處的切線方程;
(2)若恒成立,求的取值范圍。

(1);(2)

解析試題分析:(1)根據(jù)題意,由于函數(shù),則可知
當(dāng),切線在點(diǎn)(0,0)的斜率為4,那么可知曲線處的切線方程為;
(2)對(duì)于要使得恒成立,則可知只要求解函數(shù)的最小值大于等于零即可,那么根據(jù),函數(shù)為偶函數(shù),只要證明的最小值即可。那么求解導(dǎo)數(shù)大于零或者小于零的不等式可知函數(shù)單調(diào)性,得到的取值范圍;
考點(diǎn):導(dǎo)數(shù)、不等式
點(diǎn)評(píng):本題考查導(dǎo)數(shù)、不等式、函數(shù)的單調(diào)性、最值等知識(shí),考查化歸與轉(zhuǎn)化、分類與討論的數(shù)學(xué)思想方法,屬難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)=1nx-a(x-l),a∈R
(I)討論f(x)的單調(diào)性;
(Ⅱ)若x≥1時(shí),石恒成立,求實(shí)數(shù)a的取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的導(dǎo)函數(shù).
(Ⅰ)若,求的值;
(Ⅱ)若圖象與圖象關(guān)于直線對(duì)稱,△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為,角A為的初相,,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求的極小值;
(2)若直線對(duì)任意的都不是曲線的切線,求的取值范圍;
(3)設(shè),求的最大值的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)求使上是減函數(shù)的充要條件;
(2)求上的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)(I)求函數(shù)圖象上的點(diǎn)處的切線方程;
(Ⅱ)已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),
對(duì)于任意的,恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f (x) =
(1)試判斷當(dāng)的大小關(guān)系;
(2)試判斷曲線是否存在公切線,若存在,求出公切線方程,若不存在,說(shuō)明理由;
(3)試比較 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)與的大小,并寫出判斷過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)在x=1處與直線相切.
①求實(shí)數(shù),的值;②求函數(shù)上的最大值.
(2)當(dāng)時(shí),若不等式對(duì)所有的都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求出這條切線的方程;
(Ⅱ)若,討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)對(duì)任意的,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案