【題目】已知點(diǎn),過點(diǎn)作拋物線的兩切線,切點(diǎn)為.

1)求兩切點(diǎn)所在的直線方程;

2)橢圓,離心率為,(1)中直線AB與橢圓交于點(diǎn)PQ,直線的斜率分別為,,若,求橢圓的方程.

【答案】1;(2.

【解析】

1)設(shè)出切點(diǎn),利用切點(diǎn)處的導(dǎo)數(shù)是斜率,表示出切線方程,在切線上,求出兩解,分別對(duì)應(yīng)切點(diǎn)坐標(biāo),則方程可求.

2)離心率為確定的一個(gè)關(guān)系;聯(lián)立直線和橢圓方程,用上韋達(dá)定理,結(jié)合,再建立的一個(gè)關(guān)系,則橢圓方程可求.

解:

1)設(shè)切點(diǎn),則

切線的斜率為,

所以拋物線上過點(diǎn)的切線的斜率為,切線方程為,

在切線上,所以,

當(dāng)時(shí),;當(dāng),

不妨設(shè),

所以兩切點(diǎn)所在的直線方程.

2)由,得,又

所以.

,得

,

, ,又因?yàn)?/span>,,

,,,

所以橢圓的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝賓斯基在1915年提出,先作一個(gè)正三角形挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第4個(gè)大正三角形中隨機(jī)撒512粒大小均勻的細(xì)小顆粒物,則落在白色區(qū)域的細(xì)小顆粒物的數(shù)量約是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P為直線上任意一點(diǎn),M為平面內(nèi)一點(diǎn),且.

(Ⅰ)求點(diǎn)M的軌跡E的方程;

(Ⅱ)過點(diǎn)P作曲線E的切線,切點(diǎn)分別是.,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線.直線為參數(shù)),點(diǎn)的坐標(biāo)為.

1)寫出曲線的參數(shù)方程,直線的普通方程;

2)若直線與曲線相交于、兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為研究某種圖書每冊(cè)的成本費(fèi)y(單位:元)與印刷數(shù)量x(單位:千冊(cè))的關(guān)系,收集了一些數(shù)據(jù)并進(jìn)行了初步處理,得到了下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中,

1)根據(jù)散點(diǎn)圖判斷:哪一個(gè)模型更適合作為該圖書每冊(cè)的成本費(fèi)y與印刷數(shù)量x的回歸方程?(只要求給出判斷,不必說明理由)

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(結(jié)果精確到0.01);

3)若該圖書每冊(cè)的定價(jià)為9.22元,則至少應(yīng)該印刷多少冊(cè)才能使銷售利潤不低于80000元?(假設(shè)能夠全部售出,結(jié)果精確到1)

附:對(duì)于一組數(shù)據(jù)(ω1,v1),(ω2v2),(ωn,vn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,,左頂點(diǎn)為,離心率為,點(diǎn)是橢圓上的動(dòng)點(diǎn),的面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),,線段的中垂線為.若直線與直線相交于點(diǎn),與直線相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是自然對(duì)數(shù)的底數(shù),,已知函數(shù),.

1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

2)對(duì)于,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙、丙三位同學(xué)在某次考試中總成績列前三名,有,三位學(xué)生對(duì)其排名猜測如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成績公布后得知,,三人都恰好猜對(duì)了一半,則第一名是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)利用“五點(diǎn)法”畫出函數(shù)在長度為一個(gè)周期的閉區(qū)間的簡圖.

列表:

x

y

作圖:

(2)并說明該函數(shù)圖象可由的圖象經(jīng)過怎么變換得到的.

(3)求函數(shù)圖象的對(duì)稱軸方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案