已知f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N+)

經(jīng)計(jì)算得f(2)=
3
2
,f(4)>2,f(8)
5
2
,f(16)>3,f(32)
7
2
,通過觀察,我們可以得到一個一般性的結(jié)論.
(1)試寫出這個一般性的結(jié)論;
(2)請證明這個一般性的結(jié)論;
(3)對任一給定的正整數(shù)a,試問是否存在正整數(shù)m,使得1+
1
2
+
1
3
+…+
1
m
>a
?若存在,請給出符合條件的正整數(shù)m的一個值;若不存在,請說明理由.
(1)根據(jù)f(2)=
3
2
,f(4)>2,f(8)
5
2
,f(16)>3,f(32)
7
2
,通過觀察,
我們可以得到一個一般性的結(jié)論 f(2n)≥
n+2
2
,(當(dāng)且僅當(dāng)n=1時取等號).…(4分)
(2)證明:(數(shù)學(xué)歸納法)
①當(dāng)n=1時,結(jié)論顯然成立.
②假設(shè)當(dāng)n=k時成立,即
1
2
 +
1
3
+
1
4
+…+
1
2k
≥1+
1
2
k
,…(2分)
當(dāng)n=k+1時,左邊=
1
2
+
1
3
+
1
4
+…+
1
2k
+…+
1
2k
≥1+
1
2
k
+
1
2k+1
+
1
2k+2
+…+
1
2k+2k
  
≥1+
1
2
k
+
2k
2k+2k
=1+
1
2
(k+1)
=右邊.
即當(dāng)n=k+1時,f(2n)≥1+
1
2n
 也成立.…(3分)
由①②知,f(2n)≥1+
1
2n
  成立. …(1分)
(3)由(2)可得,存在m滿足條件.…(1分)
令 a=1+
1
2
k
,只要 
1
m
1
2k
 即可,即
1
m
1
22a-2
=
4
22a
,即 m≥
22a
4

可取 m=22a.…(3分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且對任意m、n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).
給出以下三個結(jié)論:(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.其中正確的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=
1
n+1
+
1
n+2
+…+
1
3n-1
(n∈N+),則f(k+1)-f(k)=
1
3k
+
1
3k+1
+
1
3k+2
-
1
k+1
1
3k
+
1
3k+1
+
1
3k+2
-
1
k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且對任意m、n∈N*都有:
①f(m,n+1)=f(m,n)+2;  ②f(m+1,1)=2f(m,1).
給出以下三個結(jié)論:(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.
其中正確的個數(shù)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且對任意m、n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).給出以下四個結(jié)論:
(1)f(1,2)=3;  (2)f(1,5)=9;  (3)f(5,1)=16;  (4)f(5,6)=26.其中正確的為
(1)(2)(3)(4)
(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三第五次質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且對任意m、n∈N*都有:

① f(m,n+1)= f(m,n)+2;  ② f(m+1,1)=2 f(m,1).

給出以下三個結(jié)論:(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.

其中正確的個數(shù)為       

 

查看答案和解析>>

同步練習(xí)冊答案