函數(shù)f(x)=
3
sin(ωx+?)(ω>0)
的部分圖象,如圖所示,若
AB
BC
=|
AB
|2
,則ω等于( 。
分析:
AB
BC
=|
AB
|2
,可求得∠ABC=120°,再由函數(shù)最大值為
3
,通過解三角形可求得周期,由此即可求得ω值.
解答:解:由
AB
BC
=|
AB
|2
,得|
AB
|•|
BC
|•cos(π-∠ABC)=|
AB
|2
,即|
BC
|•(-cos∠ABC)=|
AB
|
,
由圖知|
BC
|=2|
AB
|,所以cos∠ABC=-
1
2
,即得∠ABC=120°,
過B作BD⊥x軸于點(diǎn)D,則BD=
3
,在△ABD中∠ABD=60°,BD=
3
,易求得AD=3,
所以周期T=3×4=12,所以ω=
12
=
π
6

故選B.
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式及平面向量數(shù)量積的運(yùn)算,解決本題的關(guān)鍵是由所給數(shù)量積求出∠ABC=120°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
3
sin(x+φ)-cos(x+φ)(0<φ<π)
為奇函數(shù),則φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(2x+
π4
)

(1)求函數(shù)f(x)圖象的對(duì)稱軸;
(2)求函數(shù)f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①冪函數(shù)都具有奇偶性; 
②命題P:?x0∈[-1,1],滿足x02+x0+1>a,使命題P為真的實(shí)數(shù)a的取值范圍為a<3;
③代數(shù)式sinα+sin(
3
+α)+sin(
3
+α)
的值與角a有關(guān);
④將函數(shù)f(x)=3sin(2x-
π
3
)
的圖象向左平移
π
3
個(gè)單位長度后得到的圖象所對(duì)應(yīng)的函數(shù)是奇函數(shù); 
⑤已知數(shù)列{an}滿足:a1=m,a2=n,an+2=an+1-an(n∈N),記Sn=a1+a2+…an,則S2011=m;
其中正確的命題的序號(hào)是
②⑤
②⑤
  (請(qǐng)把正確命題的序號(hào)全部寫出來)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin(ωx+φ)
-cos(ωx+φ)(ω>0,0<φ<π)為奇函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為
π
2

(1)求出φ的值,寫出f(x)的解析式;  (2)設(shè)a,b,c為△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若sinA=
2
2
3
,f(
B
2
)=1,b=1
,求邊長a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博二模)已知函數(shù)f(x)=
3
sinωx•cosωx+cos2ωx-
1
2
(ω>0)
,其最小正周期為
π
2

(I)求f(x)的表達(dá)式;
(II)將函數(shù)f(x)的圖象向右平移
π
8
個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,
π
2
]
上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案