解:(Ⅰ)f′(x)=
=
,x>0.
令f′(x)>0,得x>1,因此函數(shù)f(x)的單調(diào)遞增區(qū)間是(1,+∞).
令f′(x)<0,得0<x<1,因此函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,1).
(Ⅱ)依題意,ma<f(x)
max.
由(Ⅰ)知,f(x)在[1,e]上是增函數(shù),
∴f(x)
max=f(e)=lne+
-1=
.
∴ma<
,即ma-
<0對于任意的a∈(-1,1)恒成立.
∴
解得-
≤m≤
.
所以,m的取值范圍是[-
,
].
(Ⅲ)由(Ⅰ)知函數(shù)f(x)在[1,+∞)上單調(diào)遞增,
故f(x)=lnx+
-1≥f(1)=0,
∴l(xiāng)nx≥1-
,以x
2替代x,得lnx
2≥1-
.
∴l(xiāng)n
2l+1n
22+…+ln
2n>1-
+1-
+…+1-
即ln
2l+1n
22+…+ln
2n>n-(
+
+…+
).
又
+
+…+
<1+
+
+…+
∴-(
+
+…+
)>-[1+
+
+…+
]
∴n-(
+
+…+
)>n-[1+
+
+…+
]=n-[1+1-
+
-
+…+
]=
,
∴l(xiāng)n1+ln2+…+lnn>
.
由柯西不等式,
(ln
2l+1n
22+…+ln
2n)(1
2+1
2+…+1
2)≥(ln1+ln2+…+lnn)
2.
∴l(xiāng)n
2l+1n
22+…+ln
2n≥
(ln1+ln2+…+lnn)
2>
.
∴l(xiāng)n
2l+1n
22,+…+ln
2 n>
.
分析:(I)利用導(dǎo)數(shù)求出函數(shù)的極值,然后求f(x)的單調(diào)區(qū)間;
(II)依題意,ma<f(x)
max,由(I)可得f(x)在x=e處取得最大值,故問題轉(zhuǎn)化為ma-
<0對于任意的a∈(-1,1)恒成立,即可求m的取值范圍;
(III)由(Ⅰ)知函數(shù)f(x)在[1,+∞)上單調(diào)遞增,從而可得lnx
2≥1-
.再利用疊加及放縮,可得ln1+ln2+…+lnn>
恒成立,再結(jié)合柯西不等式即可證明不等式成立.
點評:本題是中檔題,考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,不等式的綜合應(yīng)用,柯西不等式的應(yīng)用,考查計算能力,轉(zhuǎn)化思想的應(yīng)用.