【題目】設(shè)數(shù)列的前n項(xiàng)和為,對(duì)任意的正整數(shù)n,都有成立,記(),
(1)求數(shù)列的通項(xiàng)公式;
(2)記(),設(shè)數(shù)列的前n和為,求證:對(duì)任意正整數(shù)n,都有.
【答案】(1)()
(2)對(duì)任意正整數(shù)n,都有,證明略
【解析】
試題(1)已知與的關(guān)系式,如本題,都是再寫一次(可用代),,兩式相減后得數(shù)列的遞推式,從而可得,數(shù)列是等比數(shù)列,因此通項(xiàng)公式可得;(2)由(1)求得,從要證明的不等式看,要求能計(jì)算出其和,但從通項(xiàng)的形式知其和求不出來(lái),但是從問(wèn)題看,想象能否采用放縮法,即把放大一點(diǎn),以便可求和,,此時(shí)要注意,不能用這種放縮法,可直接計(jì)算得,當(dāng)時(shí),用此放縮法得,求和后可證得不等式成立.
試題解析:(1)當(dāng)時(shí),,∴,
又∵,,∴,即,
∴數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,
∴.
(2)由得
又,當(dāng)時(shí),,
當(dāng)時(shí),
∴對(duì)任意正整數(shù)都有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在2015年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | ||
第2組 | a | ||
第3組 | 30 | b | |
第4組 | 20 | ||
第5組 | 10 | ||
合計(jì) | 100 |
Ⅰ求出頻率分布表中a,b的值,再在答題紙上完成頻率分布直方圖;
Ⅱ根據(jù)樣本頻率分布直方圖估計(jì)樣本成績(jī)的中位數(shù);
Ⅲ高校決定在筆試成績(jī)較高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,再?gòu)?名學(xué)生中隨機(jī)抽取2名學(xué)生由A考官進(jìn)行面試,求第4組至少有一名學(xué)生被考官A面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 交于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.
(Ⅰ)在圖2中,求證: ;
(Ⅱ)若點(diǎn)是線段上的一動(dòng)點(diǎn),問(wèn)點(diǎn)在什么位置時(shí),二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的最小值.
(Ⅱ)若在區(qū)間上有兩個(gè)極值點(diǎn),
(i)求實(shí)數(shù)的取值范圍;
(ii)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中是常數(shù),,),函數(shù)的導(dǎo)函數(shù)為,且.
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值,并指出是極大值還是極小值;
(2)若,求證:在區(qū)間上,函數(shù)的圖像在函數(shù)的圖像的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,,且分別為線段的中點(diǎn),沿把折起,使,得到如下的立體圖形.
(1)證明:平面平面;
(2)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車間有5名工人其中初級(jí)工2人,中級(jí)工2人,高級(jí)工1人現(xiàn)從這5名工人中隨機(jī)抽取2名.
Ⅰ求被抽取的2名工人都是初級(jí)工的概率;
Ⅱ求被抽取的2名工人中沒(méi)有中級(jí)工的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(是自然對(duì)數(shù)的底數(shù))
(1)判斷函數(shù)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(2)若, ,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com