已知:sinβ=,sin(α+β)=1.求sin(2α+β)的值.

答案:
解析:

∵sin(α+β)=1,∴α+β=2kπ+,k∈Z,sin(2α+β)=sin(α+β+α)=sin(2kπ++α)=cosα,又∵cos α=cos(2kπ+-β)=sinβ=,∴sin(2α+β)=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆高考數(shù)學(xué)第一輪復(fù)習(xí)測試題6 題型:044

(理)已知向量m=(sinωx+cosωx,cosωx),n=(cosωx-sinωx,2 sinωx),其中ω>0,函數(shù)f(x)=m·n,若f(x)相鄰兩對稱軸間的距離為

(1)求ω的值,并求f(x)的最大值及相應(yīng)x的集合;

(2)在△ABC中,a、b、c分別是A、B、C所對的邊,△ABC的面積S=5,b=4,f(A)=1,求邊a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CAB兩點,N為弦AB的中點。

(1)求直線ONO為坐標原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角A、B、C為△ABC的三個內(nèi)角,其對邊分別為a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.

(Ⅰ)若△ABC的面積S=,求b+c的值.(Ⅱ)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△中,已知·=9,sin=cossin,面積S=6.

(Ⅰ)求△的三邊的長;

(Ⅱ)設(shè)是△(含邊界)內(nèi)一點,到三邊,的距離分別為x,y和z,求x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(遼寧卷)解析版(文) 題型:解答題

 

已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性; 

(Ⅱ)設(shè),證明:對任意.

    1.選修4-1:幾何證明選講

    如圖,的角平分線的延長線交它的外接圓于點

(Ⅰ)證明:∽△;

(Ⅱ)若的面積,求的大小.

證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.

因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.

故△ABE∽△ADC.

(Ⅱ)因為△ABE∽△ADC,所以,即AB·ACAD·AE.

SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE.

則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.

 

查看答案和解析>>

同步練習(xí)冊答案