設(shè)點M(x0,1),若在圓O:x2+y2=1上存在點N,使得∠OMN=45°,則x0的取值范圍是( 。
A、[-1,1]
B、[-
1
2
,
1
2
]
C、[-
2
2
]
D、[-
2
2
2
2
]
考點:直線和圓的方程的應(yīng)用
專題:直線與圓
分析:根據(jù)直線和圓的位置關(guān)系,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:由題意畫出圖形如圖:點M(x0,1),要使圓O:x2+y2=1上存在點N,使得∠OMN=45°,
則∠OMN的最大值大于或等于45°時一定存在點N,使得∠OMN=45°,
而當(dāng)MN與圓相切時∠OMN取得最大值,
此時MN=1,
圖中只有M′到M″之間的區(qū)域滿足MN=1,
∴x0的取值范圍是[-1,1].
故選:A.
點評:本題考查直線與圓的位置關(guān)系,直線與直線設(shè)出角的求法,數(shù)形結(jié)合是快速解得本題的策略之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某三棱錐的三視圖如圖所示,則該三棱錐最長棱的棱長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=kx+1與圓O:x2+y2=1相交于A,B 兩點,則“k=1”是“△OAB的面積為
1
2
”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的周期為2,當(dāng)x∈[-1,1]時,f(x)=x2,那么函數(shù)y=f(x)的圖象與函數(shù)y=|log4x|的圖象的交點共有(  )
A、4個B、3個C、2個D、1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次聯(lián)歡會要安排三個歌舞類節(jié)目,2個小品類節(jié)目和1個相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法種數(shù)是(  )
A、72B、120
C、144D、168

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y-1≥0
x-y-1≤0
x-3y+3≥0
,則z=x+2y的最大值為( 。
A、8B、7C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,且a+b+c=8.
(Ⅰ)若a=2,b=
5
2
,求cosC的值;
(Ⅱ)若sinAcos2
B
2
+sinBcos2
A
2
=2sinC,且△ABC的面積S=
9
2
sinC,求a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項為1,公差為2的等差數(shù)列,Sn表示{an}的前n項和.
(Ⅰ)求an及Sn
(Ⅱ)設(shè){bn}是首項為2的等比數(shù)列,公比為q滿足q2-(a4+1)q+S4=0.求{bn}的通項公式及其前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
y≤x
x+y≤4
y≥1
,則z=2x+y的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案