【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值.由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間[55,65),[65,75),[75,85]內(nèi)的頻率之比為4∶2∶1.

(1)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間[75,85]內(nèi)的概率;

(2)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機(jī)抽取3件,記這3件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間[45,75)內(nèi)的產(chǎn)品件數(shù)為X,求X的分布列.

【答案】(1);(2)詳見解析.

【解析】

(1)利用已知條件及頻率之和為1,即可求出;(2)X的所有可能取值為0,1,2,3,分別求出對(duì)應(yīng)的概率,列出分布列即可.

(1)設(shè)這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間[75,85)內(nèi)的頻率為x,則落在區(qū)間[55,65),[65,75)內(nèi)的頻率分別為4x,2x.依題意得(0.004+0.012+0.019+0.030)×10+4x+2xx=1,解得x=0.05.

所以這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間[75,85]內(nèi)的頻率為0.05.

(2)從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機(jī)抽取3件,相當(dāng)于進(jìn)行了3次獨(dú)立重復(fù)試驗(yàn),所以X服從二項(xiàng)分布B(np),其中n=3.

(1)得,這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間[45,75]內(nèi)的頻率為0.3+0.2+0.1=0.6,將頻率視為概率得p=0.6.

因?yàn)?/span>X的所有可能取值為0,1,2,3,且P(X=0)×0.60×0.43=0.064,

P(X=1)×0.61×0.42=0.288,

P(X=2)×0.62×0.41=0.432,

P(X=3)×0.63×0.40=0.216,

所以X的分布列為

X

0

1

2

3

P

0.064

0.288

0.432

0.216

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求的極值;

(Ⅱ)當(dāng)時(shí),設(shè),求證:曲線存在兩條斜率為且不重合的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解高三年級(jí)不同性別的學(xué)生對(duì)取消藝術(shù)課的態(tài)度(支持或反對(duì)),進(jìn)行了如下的調(diào)查研究,全年級(jí)共有1350人,男女生比例為,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為,通過對(duì)被抽取學(xué)生的問卷調(diào)查,得到如下列聯(lián)表:

支持

反對(duì)

總計(jì)

男生

30

女生

25

總計(jì)

1)完成列聯(lián)表,并判斷能否有的把握認(rèn)為態(tài)度與性別有關(guān)?

2)若某班有6名男生被抽到,其中2人支持,4人反對(duì);有4名女生被抽到,其中2人支持,2人反對(duì),現(xiàn)從這10人中隨機(jī)抽取一男一女進(jìn)一步調(diào)查原因.求其中恰有一人支持一人反對(duì)的概率.

參考公式及臨界值表:

0.10

0.050

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已如長(zhǎng)方形 中, ,M為的中點(diǎn),將 沿 折起,使得平面 平面

1)求證:

2)若點(diǎn) 是線段 上的中點(diǎn),求三棱錐與四棱錐的體積的比值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各項(xiàng)均為正數(shù)的數(shù)列{an}中,前n項(xiàng)和

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)若恒成立,求k的取值范圍;

(3)是否存在正整數(shù)mk,使得amam+5,ak成等比數(shù)列?若存在,求出mk的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,命題對(duì)任意,不等式成立;命題存在,使得成立.

1)若p為真命題,求m的取值范圍;

2)若pq為假,pq為真,求m的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一款智能學(xué)習(xí)APP,學(xué)習(xí)內(nèi)容包含文章學(xué)習(xí)和視頻學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響,已知該APP積分規(guī)則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計(jì)3分鐘積2分,每日上限積6分,經(jīng)過抽樣統(tǒng)計(jì)發(fā)現(xiàn),文章學(xué)習(xí)積分的概率分布表如表1所示,視頻學(xué)習(xí)積分的概率分布表如表2所示.

1

文章學(xué)習(xí)積分

1

2

3

4

5

概率

2

視頻學(xué)習(xí)積分

2

4

6

概率

1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;

2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐D-ABC中,,E,F分別為DB,AB的中點(diǎn),且.

1)求證:平面平面ABC;

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,若存在數(shù)列滿足),則稱數(shù)列的“倒差數(shù)列”,下列關(guān)于“倒差數(shù)列”描述正確的是(

A.若數(shù)列是單增數(shù)列,但其“倒差數(shù)列”不一定是單增數(shù)列;

B.,則其“倒差數(shù)列”有最大值;

C.,則其“倒差數(shù)列”有最小值;

D.,則其“倒差數(shù)列”有最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案