【題目】設(shè)f(x)= 則f(f(2))的值為;若f(x)=a有兩個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為

【答案】2;[1,2e)
【解析】解:由分段函數(shù)得f(2)=log33=1,f(1)=2e11=2e0=2,
作出函數(shù)f(x)的圖象如圖:
當(dāng)x≥2時(shí),函數(shù)f(x)=log3(x2﹣1)為增函數(shù),
則f(x)≥f(2)=1,
當(dāng)x<2時(shí),f(x)=2ex1 , 為增函數(shù),
則0<f(x)<2e,
∴要使f(x)=a有兩個(gè)不等的實(shí)數(shù)根,
則1≤a<2e,
所以答案是:2,[1,2e)

【考點(diǎn)精析】本題主要考查了函數(shù)的零點(diǎn)與方程根的關(guān)系的相關(guān)知識點(diǎn),需要掌握二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在直線上,且圓經(jīng)過點(diǎn)與點(diǎn).

(1)求圓的方程;

(2)過點(diǎn)作圓的切線,求切線所在的直線的方程.

【答案】(1);(2).

【解析】試題分析:(1)求出線段的中點(diǎn),進(jìn)而得到線段的垂直平分線為,與聯(lián)立得交點(diǎn),∴.則圓的方程可求

(2)當(dāng)切線斜率不存在時(shí),可知切線方程為.

當(dāng)切線斜率存在時(shí),設(shè)切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.

試題解析:((1)設(shè) 線段的中點(diǎn)為,∵,

∴線段的垂直平分線為,與聯(lián)立得交點(diǎn),

.

∴圓的方程為.

(2)當(dāng)切線斜率不存在時(shí),切線方程為.

當(dāng)切線斜率存在時(shí),設(shè)切線方程為,即

到此直線的距離為,解得,∴切線方程為.

故滿足條件的切線方程為.

【點(diǎn)睛本題考查圓的方程的求法,圓的切線,中點(diǎn)弦等問題,解題的關(guān)鍵是利用圓的特性,利用點(diǎn)到直線的距離公式求解.

型】解答
結(jié)束】
20

【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本(單位:萬元)與產(chǎn)品銷售收入(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).

(投入成本)

7

10

11

15

17

(銷售收入)

19

22

25

30

34

1)求關(guān)于的線性回歸方程;

2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?

相關(guān)公式 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,定義兩點(diǎn)A(xA , yA),B(xB , yB)間的“L﹣距離”為d(A﹣B)=|xA﹣xB|+|yA﹣yB|.現(xiàn)將邊長為1的正三角形按如圖所示方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合,記邊AB所在的直線斜率為k(0≤k≤ ),則d(B﹣C)取得最大值時(shí),邊AB所在直線的斜率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 是雙曲線的左,右焦點(diǎn),點(diǎn)在雙曲線上,且,則下列結(jié)論正確的是( )

A. 則雙曲線離心率的取值范圍為

B. 則雙曲線離心率的取值范圍為

C. ,則雙曲線離心率的取值范圍為

D. ,則雙曲線離心率的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓內(nèi)接四邊形ABCD中,BD是圓的直徑,AB=AC,延長AD與BC的延長線相交于點(diǎn)E,作EF⊥BD于F.

(1)證明:EC=EF;
(2)如果DC= BD=3,試求DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期是,且當(dāng)時(shí),取得最大值3.

(1)求的解析式及單調(diào)增區(qū)間;

(2)若,且,求;

(3)將函數(shù)的圖象向右平移個(gè)單位長度后得到函數(shù)的圖象,且是偶函數(shù),求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為F,動(dòng)點(diǎn)P在直線上運(yùn)動(dòng),過P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點(diǎn).

(1)求△APB的重心G的軌跡方程.

(2)證明∠PFA=∠PFB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足0<an<1,且an+1+ =2an+ (n∈N*).
(1)證明:an+1<an;
(2)若a1= ,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 證明: <Sn ﹣2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個(gè),標(biāo)號為1的小球1個(gè),標(biāo)號為2的小球n個(gè),已知從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號為2的小球的概率是.

(1)n的值;

(2)從袋子中不放回地隨機(jī)抽取2個(gè)球,記第一次取出小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.①ab2”為事件A,求事件A的概率;

在區(qū)間[0,2]內(nèi)任取2個(gè)實(shí)數(shù)xy,求事件x2y2>(ab)2恒成立的概率.

查看答案和解析>>

同步練習(xí)冊答案