【題目】已知某條地鐵線路通車后,地鐵的發(fā)車時間間隔為t(單位:分鐘),并且.經(jīng)市場調(diào)研測算,地鐵載客量與發(fā)車時間間隔t相關(guān),當(dāng)時,地鐵為滿載狀態(tài),載客量為450人;當(dāng)時,載客量會減少,減少的人數(shù)與的平方成正比,且發(fā)車時間間隔為2分鐘時的載客量為258人,記地鐵載客量為(單位:人).
(1)求的解析式,并求當(dāng)發(fā)車時間間隔為5分鐘時,地鐵的載客量.
(2)若該線路每分鐘的利潤為(單位:元),問當(dāng)發(fā)車時間間隔為多少時,該線路每分鐘的利潤最大?
【答案】(1),載客量為375人,(2)15分鐘
【解析】
(1)根據(jù)題設(shè)設(shè)出的表達(dá)式,根據(jù)求出的值,即可得出的解析式,求出即可得出發(fā)車時間間隔為5分鐘時,地鐵的載客量;
(2)由的解析式得出的解析式,利用函數(shù)單調(diào)性的定義以及反比例函數(shù)的性質(zhì)得出的單調(diào)性,比較兩段的最大值,即可得出線路每分鐘的利潤最大時,發(fā)車時間間隔.
(1)由題意知(k為常數(shù)).
因為,得,
所以
所以,即當(dāng)發(fā)車時間間隔為5分鐘時,地鐵的載客量為375人.
(2)由可得
當(dāng)時,,
任取,且,
則.
因為,所以,
所以,
所以在上為增函數(shù),最大值為.
當(dāng)時,,
當(dāng)時等號成立,所以當(dāng)發(fā)車時間間隔為15分鐘時,該線路每分鐘的利潤最大,最大值為80元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)屆的震動。在1859年的時候,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計1000以內(nèi)的素數(shù)的個數(shù)為_________(素數(shù)即質(zhì)數(shù),,計算結(jié)果取整數(shù))
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)將甲、乙兩個學(xué)生在高二的6次數(shù)學(xué)測試的成績(百分制)制成如圖所示的莖葉圖,進(jìn)人高三后,由于改進(jìn)了學(xué)習(xí)方法,甲、乙這兩個學(xué)生的考試數(shù)學(xué)成績預(yù)計同時有了大的提升.若甲(乙)的高二任意一次考試成績?yōu)?/span>,則甲(乙)的高三對應(yīng)的考試成績預(yù)計為(若>100.則取為100).若已知甲、乙兩個學(xué)生的高二6次考試成績分別都是由低到高進(jìn)步的,定義為高三的任意一次考試后甲、乙兩個學(xué)生的當(dāng)次成績之差的絕對值.
(I)試預(yù)測:在將要進(jìn)行的高三6次測試中,甲、乙兩個學(xué)生的平均成績分別為多少?(計算結(jié)果四舍五入,取整數(shù)值)
(Ⅱ)求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各對事件中,不互為相互獨立事件的是( )
A.擲一枚骰子一次,事件“出現(xiàn)偶數(shù)點”;事件“出現(xiàn)3點或6點”
B.袋中有3白、2黑共5個大小相同的小球,依次有放回地摸兩球,事件“第一次摸到白球”,事件“第二次摸到白球”
C.袋中有3白、2黑共5個大小相同的小球,依次不放回地摸兩球,事件“第一次摸到白球”,事件“第二次摸到黑球”
D.甲組3名男生,2名女生;乙組2名男生,3名女生,現(xiàn)從甲、乙兩組中各選1名同學(xué)參加演講比賽,事件“從甲組中選出1名男生”,事件“從乙組中選出1名女生”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓: 的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)已知與為平面內(nèi)的兩個定點,過點的直線與橢圓交于, 兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為某沿海城市的高速公路出入口,直線為海岸線,,,是以為圓心,半徑為的圓弧型小路.該市擬修建一條從通往海岸的觀光專線,其中為上異于的一點,與平行,設(shè).
(1)證明:觀光專線的總長度隨的增大而減小;
(2)已知新建道路的單位成本是翻新道路的單位成本的2倍.當(dāng)取何值時,觀光專線的修建總成本最低?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,,點在平而內(nèi)的射影為
(1)證明:四邊形為矩形;
(2)分別為與的中點,點在線段上,已知平面,求的值.
(3)求平面與平面所成銳二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班從6名班干部中(其中男生4人,女生2人),任選3人參加學(xué)校的義務(wù)勞動.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com