已知函數(shù)f(x)=x3-6x2+9x+m,若存在a<b<c滿(mǎn)足,f(a)=f(b)=f(c)=0,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,依題意有,函數(shù)f(x)=x3-6x2+9x+m的圖象與x軸有三個(gè)不同的交點(diǎn),
f′(x)=3x2-12x+9=3(x-1)(x-3),故f(1)f(3)<0,解得m的取值范圍即可.
解答: 解:因?yàn)閒(x)=x3-6x2+9x+m,所以f′(x)=3x2-12x+9=3(x-1)(x-3),
令f′(x)=0,得x=1或x=3.依題意有,函數(shù)f(x)=x3-6x2+9x+m的圖象與x軸有三個(gè)不同的交點(diǎn),
故f(1)f(3)<0,即(1-6+9+m)(33-6×32+9×3+m)<0,所以-4<m<0.
故答案為(-4,0).
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值問(wèn)題,列出不等式解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算(
1-i
1+i
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|y=ln(x-2)+
3x-3
,x∈R},N={x||x-1|-|4-x|<a,x∈R},若M∩N≠∅,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“存在一個(gè)偶數(shù)是素?cái)?shù)”的否定為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知12<a<60,15<b<36,則a-b的取值區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)x,y滿(mǎn)足(x-1)(y+1)=16,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(1,x),
b
=(-1,x),若2
a
-
b
b
垂直,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(2,3),B(3,0),且
AC
=-2
CB
,則點(diǎn)C的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Z1,Z2是復(fù)數(shù),下列命題:
①若|Z1-Z2|=0,則
.
Z1
=
.
Z2

②若Z1=
.
Z2
,則
.
Z1
=Z2
③若|Z1|=|Z2|,則Z1
.
Z1
=Z2
.
Z2

④若|Z1|=|Z2|,則Z12=Z22
以上真命題序號(hào)
 

查看答案和解析>>

同步練習(xí)冊(cè)答案