已知拋物線(xiàn)的焦點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于點(diǎn),.
(Ⅰ)若(點(diǎn)在第一象限),求直線(xiàn)的方程;
(Ⅱ)求證:為定值(點(diǎn)為坐標(biāo)原點(diǎn)).

(Ⅰ);(Ⅱ)詳見(jiàn)解析

解析試題分析:(Ⅰ)由拋物線(xiàn)的方程知焦點(diǎn)為,準(zhǔn)線(xiàn)為。設(shè),因?yàn)辄c(diǎn)在第一象限所以。由拋物線(xiàn)的定義可知等于點(diǎn)到拋物線(xiàn)準(zhǔn)線(xiàn)的距離,即,可得,從而可求得點(diǎn)的坐標(biāo)。由點(diǎn)和點(diǎn)可求直線(xiàn)的方程。(Ⅱ)可分直線(xiàn)斜率存在和不存在兩種情況討論,為了省去討論也可直接設(shè)直線(xiàn)方程為,與拋物線(xiàn)聯(lián)立方程,消去整理可得關(guān)于的一元二次方程,因?yàn)橛袃蓚(gè)交點(diǎn)即方程有兩根,所以判別式應(yīng)大于0。然后用韋達(dá)定理得根與系數(shù)的關(guān)系。用向量數(shù)量積公式求即可得證。
試題解析:解:(Ⅰ)設(shè),由題意,.
點(diǎn)在拋物線(xiàn)上,且,
點(diǎn)到準(zhǔn)線(xiàn)的距離為.
,.                                     2分
,,
.
.
,                                              4分
直線(xiàn)的方程為,即.        5分
(Ⅱ)由題意可設(shè)直線(xiàn)的方程為:.
,即.          7分
顯然恒成立.
設(shè),,則                  9分

.
為定值.                                11分
考點(diǎn):1拋物線(xiàn)的定義;2直線(xiàn)方程;3直線(xiàn)與拋物線(xiàn)的位置關(guān)系;4向量的數(shù)量積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)Cy2=2px(p>0),M點(diǎn)的坐標(biāo)為(12,8),N點(diǎn)在拋物線(xiàn)C上,且滿(mǎn)足,O為坐標(biāo)原點(diǎn).

(1)求拋物線(xiàn)C的方程;
(2)以M點(diǎn)為起點(diǎn)的任意兩條射線(xiàn)l1,l2的斜率乘積為1,并且l1與拋物線(xiàn)C交于AB兩點(diǎn),l2與拋物線(xiàn)C交于D,E兩點(diǎn),線(xiàn)段AB,DE的中點(diǎn)分別為G,H兩點(diǎn).求證:直線(xiàn)GH過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)又本(xiàn)與橢圓交于、兩不同點(diǎn),且△的面積=,其中為坐標(biāo)原點(diǎn).
(1)證明均為定值;
(2)設(shè)線(xiàn)段的中點(diǎn)為,求的最大值;
(3)橢圓上是否存在點(diǎn),使得?若存在,判斷△的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)分別是橢圓的左、右焦點(diǎn), 點(diǎn)在橢圓上上.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線(xiàn)、均與橢圓相切,試探究在軸上是否存在定點(diǎn),點(diǎn)的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿(mǎn)足,且的面積
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線(xiàn),使與橢圓交于不同的兩點(diǎn),且線(xiàn)段恰被直線(xiàn)平分?若存在,求出的斜率取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的右頂點(diǎn)為A(2,0),點(diǎn)P(2e,)在橢圓上(e為橢圓的離心率).

(1)求橢圓的方程;
(2)若點(diǎn)B,C(C在第一象限)都在橢圓上,滿(mǎn)足,且,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)C:,定點(diǎn)M(0,5),直線(xiàn)軸交于點(diǎn)F,O為原點(diǎn),若以O(shè)M為直徑的圓恰好過(guò)與拋物線(xiàn)C的交點(diǎn).
(1)求拋物線(xiàn)C的方程;
(2)過(guò)點(diǎn)M作直線(xiàn)交拋物線(xiàn)C于A,B兩點(diǎn),連AF,BF延長(zhǎng)交拋物線(xiàn)分別于,求證: 拋物線(xiàn)C分別過(guò)兩點(diǎn)的切線(xiàn)的交點(diǎn)Q在一條定直線(xiàn)上運(yùn)動(dòng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,為原點(diǎn).
(1)如圖1,點(diǎn)為橢圓上的一點(diǎn),的中點(diǎn),且,求點(diǎn)軸的距離;

(2)如圖2,直線(xiàn)與橢圓相交于兩點(diǎn),若在橢圓上存在點(diǎn),使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分) 已知橢圓C的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)點(diǎn)恰好是拋物線(xiàn) 的焦點(diǎn)。

(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,-3)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線(xiàn)PQ兩側(cè)的動(dòng)點(diǎn),
①若直線(xiàn)AB的斜率為,求四邊形APBQ面積的最大值;
②當(dāng)A、B運(yùn)動(dòng)時(shí),滿(mǎn)足,試問(wèn)直線(xiàn)AB的斜率是否為定值,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案