已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且的面積
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使與橢圓交于不同的兩點、,且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請說明理由.

(I)橢圓的方程為.(Ⅱ)存在滿足題設條件的直線,且的斜率取值范圍是
.

解析試題分析:(Ⅰ)由題意知:.,且,由此可求得,二者相加即得,從而得橢圓的方程. (Ⅱ)假設這樣的直線存在,且直線的方程為,設與橢圓的兩交點為、,若線段恰被直線平分,則.這顯然用韋達定理.由
.再用韋達定理得,代入,再將此式代入得一只含的不等式,解此不等式即得的取值范圍.
試題解析:(Ⅰ)由題意知:,                       (1分)
橢圓上的點滿足,且

,
.                           (2分)
.                          (3分)
橢圓的方程為.                           (4分)
(Ⅱ)假設這樣的直線存在.與直線相交,直線的斜率存在.
的方程為,                               (5分)
.(*)     (6分)
直線與橢圓有兩個交點,
(*)的判別式,即.①  (7分)
、,則.          (8分)
被直線平分,可知,
,. ②            (9分)
把②代入①,得,即.     (10分)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

A(x1,y1),B(x2,y2)是橢圓C=1(a>b>0)上兩點,已知m,n,若m·n=0且橢圓的離心率e,短軸長為2,O為坐標原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

拋物線在點,處的切線垂直相交于點,直線與橢圓相交于,兩點.

(1)求拋物線的焦點與橢圓的左焦點的距離;
(2)設點到直線的距離為,試問:是否存在直線,使得,,成等比數(shù)列?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的左、右焦點和短軸的一個端點構成邊長為4的正三角形.
(1)求橢圓C的方程;
(2)過右焦點的直線與橢圓C相交于A、B兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求以橢圓的焦點為焦點,且過點的雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為,過點的直線交拋物線于點,.
(Ⅰ)若(點在第一象限),求直線的方程;
(Ⅱ)求證:為定值(點為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓E的中心是原點O,其右焦點為F(2,0),過x軸上一點A(3,0)作直線與橢圓E相交于P,Q兩點,且的最大值為.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設,過點P且平行于y軸的直線與橢圓E相交于另一點M,試問M,F,Q是否共線,若共線請證明;反之說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,已知拋物線,設點,為拋物線上的動點(異于頂點),連結并延長交拋物線于點,連結、并分別延長交拋物線于點、,連結,設、的斜率存在且分別為.

(1)若,,,求;
(2)是否存在與無關的常數(shù),是的恒成立,若存在,請將、表示出來;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線與直線相交于A、B 兩點.
(1)求證:;
(2)當的面積等于時,求的值.

查看答案和解析>>

同步練習冊答案