過曲線上的點的切線方程為________________。
(或

試題分析:∵,∴,∴在點M處的切線斜率為,∴切線方程為(或
點評:導數(shù)的幾何意義就是曲線在點處切線的斜率,即
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),若,則的值為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(I)當時,討論函數(shù)的單調性:
(Ⅱ)若函數(shù)的圖像上存在不同兩點,,設線段的中點為,使得在點處的切線與直線平行或重合,則說函數(shù)是“中值平衡函數(shù)”,切線叫做函數(shù)的“中值平衡切線”.
試判斷函數(shù)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)的“中值平衡切線”的條數(shù);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

解下列導數(shù)問題:
(1)已知,求
(2)已知,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)為常數(shù),e是自然對數(shù)的底數(shù).
(Ⅰ)當時,證明恒成立;
(Ⅱ)若,且對于任意,恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是二次函數(shù),不等式的解集是,且在點處的切線與直線平行.求的解析式;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),若在區(qū)間上單調遞減,則的取值范圍是C
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)的圖象所圍成的陰影部分 (如圖所示)的面積為,則          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的單調遞減區(qū)間為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案