農(nóng)業(yè)技術(shù)員進行某種作物的種植密度試驗,把一塊試驗田劃分為8塊面積相等的區(qū)域(除了種植密度,其它影響作物生長的因素都保持一致),種植密度和單株產(chǎn)量統(tǒng)計如下:

根據(jù)上表所提供信息,第
 
號區(qū)域的總產(chǎn)量最大,該區(qū)域種植密度為
 
株/m2
考點:根據(jù)實際問題選擇函數(shù)類型,收集數(shù)據(jù)的方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)圖象求出種植密度函數(shù)以及單株產(chǎn)量函數(shù)即可得到結(jié)論.
解答: 解:種植密度函數(shù)對應(yīng)的直線經(jīng)過點(1,2.4),(8,4.5),
則對應(yīng)直線的斜率k=
4.5-2.4
8-1
=
2.1
7
=0.3
,
則直線方程為y-2.4=0.3(x-1),即y=0.3x+2.1,
單株產(chǎn)量函數(shù)對應(yīng)的直線經(jīng)過點(1,1.28),(8,0.72),
則對應(yīng)直線的斜率k=
1.28-0.72
1-8
=
0.56
-7
=-0.08
,
則直線方程為y-1.28=-0.08(x-1),即y=-0.08x+1.36,
即總產(chǎn)量m(x)=(0.3x+2.1)(-0.08x+1.36)=-0.024(x+7)(x-17)=-0.024(x2-10x-119),
∴當(dāng)x=5時,函數(shù)m(x)有最大值,即5號區(qū)域的總產(chǎn)量最大,
此時當(dāng)x=5代入y=0.3x+2.1得y=0.3×5+2.1=3.6,
故答案為:5,3.6.
點評:本題主要考查函數(shù)的應(yīng)用,利用條件求出對應(yīng)的直線方程,利用二次函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某品牌電視專賣店,在五一期間設(shè)計一項有獎促銷活動:每購買一臺電視,即可通過電腦產(chǎn)生一組3個數(shù)的隨機數(shù)組,根據(jù)下表兌獎.
獎次 一等獎 二等獎 三等獎
隨機數(shù)組的特征 3個1或3個0 只有2個1或2個0 只有1個1或1個0
獎金(單位:元) 5m 2m m
商家為了了解計劃的可行性,估計獎金數(shù),進行了隨機模擬試驗,產(chǎn)生20組隨機數(shù)組,每組3個數(shù),試驗結(jié)果如下所示:
235,145,124,754,353,296,065,379,118,247,
520,356,218,954,245,368,035,111,357,265.
(1)在以上模擬的20組數(shù)中,隨機抽取3組數(shù),至少有1組獲獎的概率;
(2)根據(jù)上述模擬試驗的結(jié)果,將頻率視為概率.
(i)若活動期間某單位購買四臺電視,求恰好有兩臺獲獎的概率;
(ii)若本次活動平均每臺電視的獎金不超過260元,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)拋物線C:y2=2px(p>0)的焦點為F,準(zhǔn)線為l,過準(zhǔn)線l上一點M(-1,0)且斜率為k的直線l1交拋物線C于A,B兩點,線段AB的中點為P,直線PF交拋物線C于D,E兩點.
(Ⅰ)求拋物線C的方程及k的取值范圍;
(Ⅱ)是否存在k值,使點P是線段DE的中點?若存在,求出k值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)由下表定義:
x 1 2 3 4 5
f(x) 4 1 3 5 2
若a1=5,an+1=f(an)(n=1,2,…),則a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=1-i(i為虛數(shù)單位)則
4
z
+z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m為不小于2的正整數(shù),對任意n∈Z,若n=qm+r(其中q,r∈Z,且0≤r≤m),則記fm(n)=r,如f2(3)=1,f3(8)=2.下列關(guān)于該映射fm:Z→Z的命題中,正確的是
 

①若a,b∈Z,則fm(a+b)=fm(a)+fm(b)
②若a,b,k∈Z,且fm(a)=m(b),則fm(ka)=fm(kb)
③若a,b,c,d∈Z,且fm(a)=fm(b),fm(c)=fm(d),則fm(a+c)=fm(b+d)
④若a,b,c,d∈Z,且fm(a)=fm(b),fm(c)=fm(d),則fm(ac)=fm(bd)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線f(x)=ax2-lnx存在垂直于y軸的切線,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是二次函數(shù),關(guān)于x的方程mf2(x)+nf(x)+p=0(m,n,p都是實數(shù))有四個不同的實數(shù)根,且它們從小到大的順序為:x1<x2<x3<x4,則x1-x2-x3+x4的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示是某一幾何體的三視圖,則它的體積為( 。
A、16+12π
B、48+12π
C、64+12π
D、64+16π

查看答案和解析>>

同步練習(xí)冊答案