【題目】如圖,四邊形是平行四邊形,,,,,.

1)求證:平面平面;

2)求直線與平面所成角的正弦值.

3)求二面角的正弦值.

【答案】1)證明見解析(23

【解析】

AB中點O,推導出,,,從而平面ABCD,進而,再求出,從而平面AED,由此能證明平面平面AED;
A于點G,則即為直線AB與平面BED所成的角,由此能求出直線AB與平面BED所成角的正弦值;
3二面角的平面角與二面角的平面角互補,從而問題轉化為求二面角的正弦值,過A于點G,過A于點H,則即為二面角的平面角,由此能求出二面角的正弦值.

1)證明:取中點,

易知四邊形是平行四邊形,

,,

,

,

,

平面

中,由

,又

平面,

∴平面平面

2)過于點

由(1)知平面,

即為直線與平面所成的角

∴直線與平面所成角的正弦值為

(3)∵二面角的平面角與二面角的平面角互補,

∴問題轉化為求二面角的正弦值

于點,過于點

由(1)知即切二面角的平面角

∴二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐PABCD,AP平面PCD,ADBC,ABBCADE,F分別為線段AD,PC的中點.

(1)求證AP平面BEF;

(2)求證BE平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生產基地有五臺機器,現(xiàn)有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述錯誤的的是_____________.

甲只能承擔第四項工作

乙不能承擔第二項工作

丙可以不承擔第三項工作

丁可以承擔第三項工作

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)直接寫出的零點;

2)在坐標系中,畫出的示意圖(注意要畫在答題紙上)

3)根據(jù)圖象討論關于的方程的解的個數(shù):

4)若方程,有四個不同的根、、直接寫出這四個根的和;

5)若函數(shù)在區(qū)間上既有最大值又有最小值,直接寫出a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在含有個元素的集合中,若這個元素的一個排列(,…,)滿足,則稱這個排列為集合的一個錯位排列(例如:對于集合,排列的一個錯位排列;排列不是的一個錯位排列).記集合的所有錯位排列的個數(shù)為.

(1)直接寫出,,的值;

(2)當時,試用,表示,并說明理由;

(3)試用數(shù)學歸納法證明:為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從原點向圓 作兩條切線,切點分別為,,記切線,的斜率分別為,

(Ⅰ)若圓心,求兩切線的方程;

(Ⅱ)若,求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某設備的使用年限x和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:

使用年限x

2

3

4

5

6

維修費用y

2.2

3.8

5.5

6.5

7.0

若由資料知yx呈線性相關關系.

1)請畫出上表數(shù)據(jù)的散點圖;

2)請根據(jù)最小二乘法求出線性回歸方程的回歸系數(shù)a,b

3)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面,平面平面.

(Ⅰ)證明:平面;

(Ⅱ)若底面為矩形,,的中點,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________

查看答案和解析>>

同步練習冊答案