已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=2,它的一個焦點在拋物線y2=24x的準線上,則雙曲線的方程為( 。
A、
x2
36
-
y2
108
=1
B、
x2
9
-
y2
27
=1
C、
x2
108
-
y2
36
=1
D、
x2
27
-
y2
9
=1
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:求出拋物線的準線,即有雙曲線的c=6,再由離心率公式和a2+b2=c2,可得a,b,即可得到雙曲線方程.
解答: 解:拋物線y2=24x的準線為x=-6,
則有雙曲線的一個焦點為(-6,0),
即c=6,
由e=
c
a
=2,可得a=3,
則b=
c2-a2
=
36-9
=3
3

即有雙曲線的方程為
x2
9
-
y2
27
=1.
故選:B.
點評:本題考查拋物線和雙曲線的方程和性質,運用離心率公式和a,b,c的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知g(x)=1-2x,f[g(x)]=
1+x2
x2
(x≠0),則f(
1
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=3x+
13
4
的圖象上有一點列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),其中數(shù)列{xn}為等差數(shù)列,滿足x2=-
7
2
,x5=-
13
2

(Ⅰ)求點Pn的坐標;
(Ⅱ)若拋物線列C1,C2,…,Cn分別以點P1,P2,…,Pn為頂點,且任意一條的對稱軸均平行于y軸,Cn與y軸的交點為An(0,n2+1),記與拋物線Cn相切于點An的直線的斜率為kn,求數(shù)列{
1
kn+1kn
}
前n項的和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin
x
2
cos
x
2
-2
3
sin2
x
2
+
3

(1)求函數(shù)f(x)的單調減區(qū)間
(2)已知α∈(
π
6
,
3
),且f(α)=
6
5
,求f(α-
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知區(qū)域A={(x,y)||x|≤1,|y|≤1},區(qū)域B={(x,y)|(x-1)2+(y+1)2≤4},在區(qū)域A上取一個點P,點P不在區(qū)域B上的概率為(  )
A、
π
4
B、
4-π
4
C、
1
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[1,6]上隨機取一個實數(shù)a,使關于x的方程x2+2
2
x+a=0有實數(shù)解的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,等邊三角形ABC,以△ABC各邊中點為頂點作三角形,以此類推,現(xiàn)向△ABC中隨機撒入320顆豆子,則落在陰影部分內的豆子大約是
 
顆.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=
2
3
,且an+1=
1
3
an+2×(
1
3
n+1
(Ⅰ)求證:數(shù)列{3n•an}是等差數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|lg(x-1)|,若a≠b,f(a)=f(b),則a+2b的取值范圍是( 。
A、(4
2
,+∞)
B、[4
2
,+∞)
C、(2
2
+3,+∞
D、[2
2
+3,+∞

查看答案和解析>>

同步練習冊答案