【題目】“莞馬”活動(dòng)中的α機(jī)器人一度成為新聞熱點(diǎn),為檢測其質(zhì)量,從一生產(chǎn)流水線上抽取20件該產(chǎn)品,其中合格產(chǎn)品有15件,不合格的產(chǎn)品有5件.
(1)現(xiàn)從這20件產(chǎn)品中任意抽取2件,記不合格的產(chǎn)品數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(2)用頻率估計(jì)概率,現(xiàn)從流水線中任意抽取三個(gè)機(jī)器人,記ξ為合格機(jī)器人與不合格機(jī)器人的件數(shù)差的絕對(duì)值,求ξ的分布列及數(shù)學(xué)期望.
【答案】
(1)解:隨機(jī)變量X的可能取值為0,1,2;
P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
所以隨機(jī)變量X的分布列為:
X | 0 | 1 | 2 |
P |
∴E(X)=0× +1× +2× =
(2)解:合格機(jī)器人的件數(shù)可能是0,1,2,3,相應(yīng)的不合格機(jī)器人的件數(shù)為3,2,1,0.
所以ξ的可能取值為1,3;
由題意知: ;
P(ξ=3)= + = ;
所以隨機(jī)變量ξ的分布列為:
ξ | 1 | 3 |
P |
∴
【解析】(1)隨機(jī)變量X的可能取值為0,1,2,求出相應(yīng)的概率,可求X的分布列及數(shù)學(xué)期望;(2)合格機(jī)器人的件數(shù)可能是0,1,2,3,相應(yīng)的不合格機(jī)器人的件數(shù)為3,2,1,0.所以ξ的可能取值為1,3,求出相應(yīng)的概率,可求ξ的分布列及數(shù)學(xué)期望.
【考點(diǎn)精析】本題主要考查了離散型隨機(jī)變量及其分布列的相關(guān)知識(shí)點(diǎn),需要掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實(shí)數(shù),函數(shù).
(1)若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的取值;
(2)設(shè),若,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關(guān)系式中成立的是( )
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)
C.f(2)<f(﹣1)<f(﹣ )
D.f(2)<f(﹣ )<f(﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=a|x﹣b|+c滿足①函數(shù)f(x)的圖象關(guān)于x=1對(duì)稱;②在R上有大于零的最大值;③函數(shù)f(x)的圖象過點(diǎn)(0,1);④a,b,c∈Z,試寫出一組符合要求的a,b,c的值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)椋ī仭蓿琣)∪(a,+∞),f(x)≥0的解集為M,f(x)<0的解集為N,則下列結(jié)論正確的是( 。
A.M=CRN
B.CRM∩CRN=
C.M∪N=R
D.CRM∪CRN=R
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=x2﹣3x﹣4的定義域?yàn)閇0,m],值域?yàn)? ,則m的取值范圍是( 。
A.(0,4]
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(x1 , f(x1),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點(diǎn),且初相φ的終邊經(jīng)過點(diǎn)P(1,﹣ ),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 . (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[0, ]時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com