【題目】如圖,在邊長為2a的正方形ABCD中,E,F分別為AB,BC的中點(diǎn),沿圖中虛線將3個(gè)三角形折起,使點(diǎn)A,B,C重合,重合后記為點(diǎn)P.
問:(1)折起后形成的幾何體是什么幾何體?
(2)這個(gè)幾何體共有幾個(gè)面,每個(gè)面的三角形有何特點(diǎn)?
(3)每個(gè)面的三角形面積為多少?
【答案】(1)三棱錐;(2)見解析;(3)見解析
【解析】試題分析:(1)棱錐側(cè)面為三角形,幾棱錐決定于底面邊數(shù)(2)三個(gè)側(cè)面加上一個(gè)底面,都是直角三角形(3)根據(jù)直角情況,分別求對應(yīng)直角邊,再根據(jù)直角三角形面積公式求各自面積
試題解析:(1)如圖,折起后的幾何體是三棱錐.
(2)這個(gè)幾何體共有4個(gè)面,其中△DEF為等腰三角形,△PEF為等腰直角三角形,△DPE和△DPF均為直角三角形.
(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,
S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},已知BA.
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈N時(shí),求集合A的子集的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隧道的截面是半徑為4.0 m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7 m、高為3 m的貨車能不能駛?cè)脒@個(gè)隧道?假設(shè)貨車的最大寬度為a m,那么要正常駛?cè)朐撍淼?/span>,貨車的限高為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD-A′B′C′D′中:
(1)求二面角D′-AB-D的大。
(2)若M是C′D′的中點(diǎn),求二面角M-AB-D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(2,-1).
(1)求過P點(diǎn)且與原點(diǎn)距離為2的直線l的方程;
(2)求過P點(diǎn)且與原點(diǎn)距離最大的直線l的方程,最大距離是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓上的點(diǎn)A(2,3)關(guān)于直線x+2y=0的對稱點(diǎn)仍在圓上,且直線x-y+1=0被圓截得的弦長為2,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1的棱長為a,M為BD1的中點(diǎn),N在A1C1上,且滿足|A1N|=3|NC1|.
(1)求MN的長;
(2)試判斷△MNC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖正方形的邊長為,已知,將沿邊折起,折起后點(diǎn)在平面上的射影為點(diǎn),則翻折后的幾何體中有如下描述:
①與所成角的正切值是;
②∥;
③的體積是;
④平面⊥平面;
⑤直線與平面所成角為.
其中正確的有 .(填寫你認(rèn)為正確的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】AB是☉O的直徑,點(diǎn)C是☉O上的動(dòng)點(diǎn)(點(diǎn)C不與A,B重合),過動(dòng)點(diǎn)C的直線VC垂直于☉O所在的平面,D,E分別是VA,VC的中點(diǎn),則下列結(jié)論中正確的是________(填寫正確結(jié)論的序號).
(1)直線DE∥平面ABC.
(2)直線DE⊥平面VBC.
(3)DE⊥VB.
(4)DE⊥AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com