設(shè)F1是橢圓(a>b>0)的一個(gè)焦點(diǎn),PQ是經(jīng)過另一個(gè)焦點(diǎn)F2的弦,則△PF1Q的周長(zhǎng)是(   )

A.4a            B.4b                C.2a                D.2b

 

【答案】

A

【解析】依題意,橢圓的周長(zhǎng)L=|PQ|+|PF1|+|QF1|=|PF2|+|PF1|+|QF1|+|QF2|=2a+2a=4a,選擇A

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島一模)已知點(diǎn)M在橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn),若圓M與y軸相交于A,B兩點(diǎn),且△ABM是邊長(zhǎng)為
2
6
3
的正三角形.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設(shè)P是橢圓D上的一點(diǎn),過點(diǎn)P的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)Q,若
QP
=2
PF
,求直線l的斜率;
(Ⅲ)過點(diǎn)G(0,-2)作直線GK與橢圓N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K兩點(diǎn),又過橢圓N的右焦點(diǎn)F1做平行于HK的直線交橢圓N于R,S兩點(diǎn),試判斷滿足|GH|•|GK|=3|RF1|•|F1S|的直線GK是否存在?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省正定中學(xué)2011-2012學(xué)年高二下學(xué)期第二次考試數(shù)學(xué)文科試題 題型:044

已知點(diǎn)M在橢圓D:上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn),若圓M與y軸相交于A,B兩點(diǎn),且△ABM是邊長(zhǎng)為的正三角形.

(Ⅰ)求橢圓D的方程;

(Ⅱ)設(shè)P是橢圓D上的一點(diǎn),過點(diǎn)P的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)Q,若=2,求直線l的斜率;

(Ⅲ)過點(diǎn)G(0,-2)作直線GK與橢圓N:左半部分交于H,K兩點(diǎn),又過橢圓N的右焦點(diǎn)F1做平行于HK的直線交橢圓N于R,S兩點(diǎn),試判斷滿足|GH|·|GK|=3|RF1|·|F1S|的直線GK是否存在?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省模擬題 題型:解答題

已知點(diǎn)M 在橢圓D :上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn),若圓M與y軸相交于A,B兩點(diǎn),且△ABM是邊長(zhǎng)為的正三角形,
(Ⅰ)求橢圓D的方程;
(Ⅱ)設(shè)P是橢圓D上的一點(diǎn),過點(diǎn)P的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)Q,若,求直線l的斜率;
(Ⅲ)過點(diǎn)G(0,-2)作直線GK與橢圓N:左半部分交于H,K兩點(diǎn),又過橢圓N的右焦點(diǎn)F1做平行于HK的直線交橢圓N于R,S兩點(diǎn),試判斷滿足的直線GK是否存在?請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)M在橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn),若圓M與y軸相交于A,B兩點(diǎn),且△ABM是邊長(zhǎng)為
2
6
3
的正三角形.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設(shè)P是橢圓D上的一點(diǎn),過點(diǎn)P的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)Q,若
QP
=2
PF
,求直線l的斜率;
(Ⅲ)過點(diǎn)G(0,-2)作直線GK與橢圓N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K兩點(diǎn),又過橢圓N的右焦點(diǎn)F1做平行于HK的直線交橢圓N于R,S兩點(diǎn),試判斷滿足|GH|•|GK|=3|RF1|•|F1S|的直線GK是否存在?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省青島市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知點(diǎn)M在橢圓D:=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn),若圓M與y軸相交于A,B兩點(diǎn),且△ABM是邊長(zhǎng)為的正三角形.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設(shè)P是橢圓D上的一點(diǎn),過點(diǎn)P的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)Q,若,求直線l的斜率;
(Ⅲ)過點(diǎn)G(0,-2)作直線GK與橢圓N:左半部分交于H,K兩點(diǎn),又過橢圓N的右焦點(diǎn)F1做平行于HK的直線交橢圓N于R,S兩點(diǎn),試判斷滿足|GH|•|GK|=3|RF1|•|F1S|的直線GK是否存在?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案