.已知三棱錐P—ABC的側(cè)棱兩兩垂直,且PA=2,PB=PC=4,則三棱錐P—ABC的外接球的體積為_(kāi)_______________.                                                         

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC,∠BPC=90°,PA⊥平面BPC,其中AB=
10
,BC=
13
,AC=
5
,P,A,B,C四點(diǎn)均在球O的表面上,則球O的表面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB中點(diǎn),M為PB的中點(diǎn),且△PDB是正三角形,PA⊥PC.
(I)求證:DM∥平面PAC;
(II)求證:平面PAC⊥平面ABC;
(Ⅲ)求三棱錐M-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐P-ABC中,PA⊥PC,D為AB中點(diǎn),M為PB的中點(diǎn),且AB=2PD.
(I)求證:DM∥面PAC;
(II)找出三棱錐P-ABC中一組面與面垂直的位置關(guān)系,并給出證明(只需找到一組即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC中,PC⊥底面ABC,∠ABC=90°,AB=BC=2,二面角P-AB-C為450,D、F分別為AC、PC的中點(diǎn),DE⊥AP于E.
(Ⅰ)求證:AP⊥平面BDE;
(Ⅱ)求直線(xiàn)EB與平面PAC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐P-ABC的側(cè)面PAC是底角為45°的等腰三角形,PA=PC,且該側(cè)面垂直于底面,∠ACB=90°,AB=10,BC=6,B1C1=3.
(1)求證:二面角A-PB-C是直二面角;
(2)求二面角P-AB-C的正切值;
(3)若該三棱錐被平行于底面的平面所截,得到一個(gè)幾何體ABC-A1B1C1,求幾何體ABC-A1B1C1的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案