14.設函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.

分析 (1)利用二次方程,真假求解即可.
(2)利用二次函數(shù)的零點,通過判別式,得到不等式,然后推出b的二次不等式,轉(zhuǎn)化求解即可.

解答 解 (1)當a=1,b=-2時,f(x)=x2-2x-3,
令f(x)=0,得x=3或x=-1.
∴函數(shù)f(x)的零點為3和-1.
(2)依題意,f(x)=ax2+bx+b-1=0有兩個不同實根.
∴b2-4a(b-1)>0恒成立,
即對于任意b∈R,b2-4ab+4a>0恒成立,
所以有(-4a)2-4(4a)<0⇒a2-a<0,所以0<a<1.
因此實數(shù)a的取值范圍是(0,1).

點評 本題考查函數(shù)的恒成立,二次函數(shù)的性質(zhì)的應用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.f(x)=sin2x+$\frac{\sqrt{3}}{2}$sin2x.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f($\frac{A}{2}$)=1,△ABC的面積為3$\sqrt{3}$,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合M={1,2,3},N={2,3,4},則下列式子正確的是( 。
A.M⊆NB.N⊆MC.M∩N={2,3}D.M∪N={1,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在空間直角坐標系中,設A(m,1,3),B(1,-1,1),且|AB|=2$\sqrt{2}$,則m=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若tan(α+$\frac{π}{4}$)=sin2α+cos2α,α∈($\frac{π}{2}$,π),則tan(π-α)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx-a(x-1)2-x+1.
(1)當a=0時,求f(x)的單調(diào)區(qū)間與極值;
(2)當x>1且a≥$\frac{1}{2}$時,證明:f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設全集I=R,集合A={y|y=x2-2},B={x|y=log2(3-x)},則A∩B等于( 。
A.{x|-2≤x<3}B.{x|x≤-2}C.{x|x<3}D.{x|x<-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.對于集合A,B,C,A={x|x2-5x+a≥0},B={x|m≤x≤m+7},若對于?a∈C,?m∈R,使得A∪B=R.求集合C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=2,c=3,cosB=$\frac{1}{4}$.
(1)求b的值;
(2)求sin2C的值.

查看答案和解析>>

同步練習冊答案