分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí)先求出a,b的關(guān)系,然后利用基本不等式求$\frac{4}{a}$+$\frac{6}$的最小值.
解答 解:由z=ax+by(a>0,b>0)得y=-$\frac{a}x+\frac{z}$,
作出可行域如圖:
∵a>0,b>0,
∴直線y=$-\frac{a}x+\frac{z}$的斜率為負(fù),且截距最大時(shí),z也最大.
平移直線y=$-\frac{a}$,由圖象可知當(dāng)此直線經(jīng)過點(diǎn)A時(shí),
直線的截距最大,此時(shí)z也最大.
由$\left\{\begin{array}{l}{3x-y-6=0}\\{x-y+2=0}\end{array}\right.$,解得A(4,6).
此時(shí)z=4a+6b=12,
即$\frac{a}{3}+\frac{2}$=1,
則$\frac{4}{a}$+$\frac{6}$=($\frac{4}{a}$+$\frac{6}$)($\frac{a}{3}+\frac{2}$)=$\frac{4}{3}+3+\frac{2a}+\frac{2b}{a}$≥$\frac{13}{3}+2\sqrt{\frac{2a}×\frac{2b}{a}}$=$\frac{25}{3}$,
當(dāng)且僅當(dāng)a=b時(shí)取=號(hào),
所以$\frac{4}{a}$+$\frac{6}$的最小值為:$\frac{25}{3}$.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義先求出最優(yōu)解是解決本題的關(guān)鍵,利用基本不等式的解法和結(jié)合數(shù)形結(jié)合是解決本題的突破點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 4 | C. | 0 或4 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{2}{sin1}$ | C. | 2sin1 | D. | sin2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -4 | C. | 7 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1100011 | B. | 1100111 | C. | 1100101 | D. | 1100110 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com