已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,短軸兩個(gè)端點(diǎn)為A,B,且四邊形F1AF2B是邊長(zhǎng)為2的正方形.求橢圓方程.
∵橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,
短軸兩個(gè)端點(diǎn)為A,B,
且四邊形F1AF2B是邊長(zhǎng)為2的正方形,
∴a=2,b=c,
∴2b2=4,
解得b2=2,
∴橢圓方程為
x2
4
+
y2
2
=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),直線l:x=-
1
2
將線段F1F2分成兩段,其長(zhǎng)度之比為1:3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),線段AB的中點(diǎn)M在直線l上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,F(xiàn)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)焦點(diǎn),A、B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為
1
2
,點(diǎn)C在x軸上,BC⊥BF,由B、C、F三點(diǎn)確定的圓M恰好與直線x+
3
y+3=0
相切.
(I)求橢圓的方程;
(II)過(guò)F作一條與兩坐標(biāo)軸都不垂直的直線l交橢圓于P、Q兩點(diǎn),若在x軸上存在一點(diǎn)N(x0,0),使得直線NP與直線NQ關(guān)于x軸對(duì)稱,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x-y+2
2
=0的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若方程
x2
a2
+
y2
a+6
=1
表示焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為12,離心率為
1
3
,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓
x2
9
+
y2
16
=1
的焦點(diǎn)坐標(biāo)為( 。
A.(0,5)和(0,-5)B.(5,0)和(-5,0)C.(0,
7
)和(0,-
7
D.(
7
,0)和(-
7
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知M是橢圓
x2
9
+
y2
5
=1
上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),I是△MF1F2的內(nèi)心,延長(zhǎng)MI交F1F2于N,則
|MI|
|NI|
等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知F1、F2是橢圓
x2
16
+
y2
25
=1
的兩個(gè)焦點(diǎn),過(guò)F1的直線與橢圓交于M、N兩點(diǎn),則△MNF2的周長(zhǎng)為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案