精英家教網 > 高中數學 > 題目詳情

【題目】(選修4-4:坐標系與參數方程)

已知圓的參數方程為為參數),將圓上所有點的橫坐標伸長到原來的倍,縱坐標不變得到曲線;以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求曲線的普通方程與曲線的直角坐標方程;

2)設為曲線上的動點,求點與曲線上點的距離的最小值,并求此時點的坐標.

【答案】的普通方程為;的直角坐標方程為;(,此時點

【解析】

試題(1)根據伸縮變換公式可得的參數方程,消參可得普通方程.將先按兩角和差公式展開,根據公式可將其化簡為直角坐標方程.(2)根據的參數方程可設,由點到線的距離公式可求得點的距離.用化一公式將其化簡可求得的最值,同時可得點的坐標.

試題解析:解:()由已知曲線的參數方程為為參數),

的普通方程為;

,

由互化公式得的直角坐標方程為

)設點到直線的距離為

,即時,

,此時點

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面為菱形,且,中點.

1)證明:平面;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】動點距離與到直線的距離之比為,記動點的軌跡為.

1)求出曲線的方程,并求出的最小值,其中點

2是曲線上的動點,且直線經過定點,問在軸上是否存在定點,使得,若存在,請求出定點;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為常數).

1)討論函數的單調性;

(2)當時,設的兩個極值點,()恰為的零點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校為了了解該校某年級學生的閱讀量(分鐘),隨機抽取了n名學生,調查他們一天的閱讀時間,統(tǒng)計結果下圖表所示:

組號

分組

男生

人數

男生人數占本

組人數的頻率

頻率分布直方圖

1

5

0.5

2

18

0.9

3

24

0.8

4

0.4

5

3

0.2

1)求出的值;

2天的閱時間不少于35分鐘稱為喜好閱讀者”.根據以上數據,完成下面的列聯表,并回答能否在犯錯誤的概率不超過0.05的前提下認為喜好閱讀者性別有關?

喜好閱讀者

非喜好閱讀者

合計

男生

女生

合計

附:(其中為樣本容量).

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)當時,討論函數的單調性

(2)當時,,對任意,都有恒成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代數學名著,它在幾何學中的研究比西方早1000多年,在《九章算術》中,將底面為直角三角形,且側棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,.

(1)求證:四棱錐為陽馬;

(2)若,當鱉膈體積最大時,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“中國人均讀書4.3本(包括網絡文學和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復引用,出現這樣的統(tǒng)計結果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現對小區(qū)內看書人員進行年齡調查,隨機抽取了一天40名讀書者進行調查,將他們的年齡分成6段: , , , 后得到如圖所示的頻率分布直方圖.問:

(1)估計在40名讀書者中年齡分布在的人數;

(2)求40名讀書者年齡的平均數和中位數;

(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,焦距為,與拋物線有公共焦點.

1)求橢圓C1與拋物線的方程;

2)已知直線是圓的一條切線,與橢圓C1交于兩點,若直線斜率存在且不為,在橢圓C1上存在點,使,其中為坐標原點,求實數λ的取值范圍.

查看答案和解析>>

同步練習冊答案