【題目】已知函數(shù)
(Ⅰ)若函數(shù)的圖像在點處的切線與直線平行,求實數(shù)的值;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)若時,在定義域內(nèi)總有成立,試求實數(shù)的最大值.
【答案】(Ⅰ)(Ⅱ)當時,函數(shù)在單調(diào)遞減;當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;
當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(Ⅲ)
【解析】試題分析:
(Ⅰ)結(jié)合導函數(shù)與原函數(shù)切線的關(guān)系可得;
(Ⅱ)結(jié)合導函數(shù)的性質(zhì)分類討論有當時,函數(shù)在單調(diào)遞減;當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;
當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(Ⅲ)原問題等價于恒成立,構(gòu)造函數(shù),結(jié)合導函數(shù)研究函數(shù)的最小值可得實數(shù)的最大值為
試題解析:
(Ⅰ)易得,且
由題意,得,解得,
(Ⅱ)由(Ⅰ)得,
①當時, , 函數(shù)在單調(diào)遞減,
②當時,由,得;
由,得或
函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
③當時,同理,得
函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
綜上,當時,函數(shù)在單調(diào)遞減;
當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;
當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(Ⅲ)當時,由恒成立,
即恒成立,
即恒成立,
令,則只需
又,令,得,
當時, ,此時,函數(shù)在上單調(diào)遞減;
當時, ,此時,函數(shù)在上單調(diào)遞增,
當時,
故所求實數(shù)的最大值為
科目:高中數(shù)學 來源: 題型:
【題目】已知直線經(jīng)過兩條直線l1:3x+4y﹣5=0和l2:2x﹣3y+8=0的交點M.
(1)若直線l與直線2x+y+2=0垂直,求直線l的方程;
(2)若直線l′與直線l1關(guān)于點(1,﹣1)對稱,求直線l′的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如下表所示:
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)從三角形地塊的內(nèi)部和邊界上分別隨機選取一株作物,求它們恰好“相近”的概率;
(2)從所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數(shù)學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應(yīng)購進16枝還是17枝?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點,F(xiàn)是側(cè)面BCC1B1內(nèi)的動點,且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是( )
A.{t| }
B.{t| ≤t≤2}??
C.{t|2 }
D.{t|2 }
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32=9a2a6 .
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=|10+2log3an|,求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為,曲線的極坐標方程為.
(1)寫出直線的直角坐標方程和曲線的普通方程;
(2)求直線與曲線的交點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(m,n),求:
(1)點P在直線x+y=7上的概率;
(2)點P在圓x2+y2=25外的概率.
(3)將m,n,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知甲袋中有1個黃球和2個紅球,乙袋中有2個黃球和2個紅球,現(xiàn)隨機地從甲袋中取出兩個球放入乙袋中,然后從乙袋中隨機取出1個球,則從乙袋中取出紅球的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com