【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖像在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)若時,在定義域內(nèi)總有成立,試求實(shí)數(shù)的最大值.

【答案】(Ⅰ)(Ⅱ)當(dāng)時,函數(shù)單調(diào)遞減;當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減;

當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減.(Ⅲ)

【解析】試題分析:

()結(jié)合導(dǎo)函數(shù)與原函數(shù)切線的關(guān)系可得

()結(jié)合導(dǎo)函數(shù)的性質(zhì)分類討論有當(dāng)時,函數(shù)單調(diào)遞減;當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減;

當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

()原問題等價于恒成立,構(gòu)造函數(shù),結(jié)合導(dǎo)函數(shù)研究函數(shù)的最小值可得實(shí)數(shù)的最大值為

試題解析:

(Ⅰ)易得,且

由題意,得,解得,

(Ⅱ)由(Ⅰ)得,

①當(dāng)時, , 函數(shù)單調(diào)遞減,

②當(dāng)時,由,得

,得

函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

③當(dāng)時,同理,得

函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

綜上,當(dāng)時,函數(shù)單調(diào)遞減;

當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減;

當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

(Ⅲ)當(dāng)時,由恒成立,

恒成立,

恒成立,

,則只需

,令,得,

當(dāng)時, ,此時,函數(shù)上單調(diào)遞減;

當(dāng)時, ,此時,函數(shù)上單調(diào)遞增,

當(dāng)時,

故所求實(shí)數(shù)的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過兩條直線l1:3x+4y﹣5=0和l2:2x﹣3y+8=0的交點(diǎn)M.
(1)若直線l與直線2x+y+2=0垂直,求直線l的方程;
(2)若直線l′與直線l1關(guān)于點(diǎn)(1,﹣1)對稱,求直線l′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(diǎn)(指縱、橫直線的交叉點(diǎn)以及三角形的頂點(diǎn))處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗(yàn),一株該種作物的年收獲量Y(單位:kg)與它的相近作物株數(shù)X之間的關(guān)系如下表所示:

X

1

2

3

4

Y

51

48

45

42

這里,兩株作物相近是指它們之間的直線距離不超過1米.

(1)從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株作物,求它們恰好相近的概率;

(2)從所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)16枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計(jì)劃一天購進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16枝還是17枝?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點(diǎn),F(xiàn)是側(cè)面BCC1B1內(nèi)的動點(diǎn),且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是(

A.{t| }
B.{t| ≤t≤2}??
C.{t|2 }
D.{t|2 }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=|10+2log3an|,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為,曲線的極坐標(biāo)方程為.

(1)寫出直線的直角坐標(biāo)方程和曲線的普通方程;

(2)求直線與曲線的交點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo)(m,n),求:
(1)點(diǎn)P在直線x+y=7上的概率;
(2)點(diǎn)P在圓x2+y2=25外的概率.
(3)將m,n,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲袋中有1個黃球和2個紅球,乙袋中有2個黃球和2個紅球,現(xiàn)隨機(jī)地從甲袋中取出兩個球放入乙袋中,然后從乙袋中隨機(jī)取出1個球,則從乙袋中取出紅球的概率為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案