過雙曲線的左焦點(diǎn)F作⊙O: 的兩條切線,記切點(diǎn)為A,B,雙曲線左頂點(diǎn)為C,若,則雙曲線的離心率為____________.
2

試題分析:因?yàn)椤螦CB=120°,OA=OC,所以∠AOC=60°。
∵FA是圓的切線,∴∠AFO=30°,∴OF=2OC,∴c=2a,∴e=2
故答案為2。
點(diǎn)評:中檔題,解題的關(guān)鍵是熟練明確雙曲線與圓的位置關(guān)系,結(jié)合有關(guān)條件確定a,b,c的關(guān)系。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別是,Q是橢圓外的動(dòng)點(diǎn),滿足.點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)T是的中點(diǎn).

(Ⅰ)設(shè)為點(diǎn)的橫坐標(biāo),證明;
(Ⅱ)求點(diǎn)T的軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線,過的直線分別交于,若是線段的中點(diǎn),則等于(  )
A.12B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn) 為且過點(diǎn)橢圓;
(2)與雙曲線有相同的漸近線,且過點(diǎn)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,短軸長為4.

(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)直線x=2與橢圓C交于P、Q兩點(diǎn),A、B是橢圓O上位于直線PQ兩側(cè)的動(dòng)點(diǎn),且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設(shè)直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的右焦點(diǎn)為(3,0),則該雙曲線的離心率等于 (   )
A.B.C..D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

知圓柱的底面半徑為2,高為3,用一個(gè)平面去截,若所截得的截面為橢圓,則橢圓的離心率的取值范圍為( 。
A.B.(0,C.D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,其左、右焦點(diǎn)分別為,短軸長為,點(diǎn)在橢圓上,且滿足的周長為6.
(Ⅰ)求橢圓的方程;;
(Ⅱ)設(shè)過點(diǎn)的直線與橢圓相交于A、B兩點(diǎn),試問在x軸上是否存在一個(gè)定點(diǎn)M使恒為定值?若存在求出該定值及點(diǎn)M的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案