“m<0<n”是“方程nx2+my2=1表示雙曲線”的( )
A.充分不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】分析:當m<0<n可以方程nx2+my2=1表示雙曲線,反之當方程nx2+my2=1表示雙曲線時,不一定是m<0<n,有可能是n<0<m,得到結(jié)論.
解答:解:∵m<0<n可以方程nx2+my2=1表示雙曲線,
反之當方程nx2+my2=1表示雙曲線時,不一定是m<0<n,有可能是n<0<m,
∴前者能夠推出后者,后者不能推出前者,
前者是后者的充分不必要條件,
故選A
點評:本題考查必要條件、充分條件與充要條件,及雙曲線的方程,本題解題的關(guān)鍵是理解對于所給的方程,可以表示雙曲線的條件,本題是一個基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π
;
②已知O、A、B、C是平面內(nèi)不同的四點,且
OA
OB
OC
,則α+β=1是A、B、C三點共線的充要條件;
③若數(shù)列an恒滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足an+12-an2=d(其中d是常數(shù),n∈N﹡),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足
a
2
n+1
-
a
2
n
=d(其中d是常數(shù),n∈N),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{}滿足(其中d是常數(shù),N﹡),則稱數(shù)列{}是“等方差數(shù)列”. 已知數(shù)列{}是公差為m的差數(shù)列,則m=0是“數(shù)列{}是等方差數(shù)列”的                 條件。(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年安徽省六安一中高三(下)第七次月考數(shù)學試卷(理科)(解析版) 題型:填空題

給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則;
②已知O、A、B、C是平面內(nèi)不同的四點,且,則α+β=1是A、B、C三點共線的充要條件;
③若數(shù)列an恒滿足(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達式為
(k∈N*).
其中正確命題的序號是   

查看答案和解析>>

同步練習冊答案