設(shè)關(guān)于x的方程x2-(tanθ+i)x-(2+i)=0,若方程有實數(shù)根,求銳角θ和實數(shù)根.
分析:先將原方程可化為x2-xtanθ-2-(x+1)i=0,再根據(jù)復(fù)數(shù)相等的條件得出左邊復(fù)數(shù)的實部與虛數(shù)都為0得到關(guān)于θ的方程組,解之即得.
解答:解:原方程可化為x2-xtanθ-2-(x+1)i=0
x2-xtanθ-2=0
x+1=0
解得x=-1,θ=kπ+
π
4

又θ是銳角,故θ=
π
4
點評:本小題主要考查復(fù)數(shù)的基本概念、一元二次方程的解法等基礎(chǔ)知識,考查運(yùn)算求解能力與化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的方程x2-(m+i)x-(2+i)=0,m是實數(shù);
(1)若上述方程有實根,求出其實根以及此時實數(shù)m的值;
(2)證明:對任意實數(shù)m,方程不存在純虛數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的方程x2-mx-1=0有兩個實根α,β,且α<β.定義函數(shù)f(x)=
2x-mx2+1

(1)當(dāng)α=-1,β=1時,判斷f(x)在R上的單調(diào)性,并加以證明;
(2)求αf(α)+βf(β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的方程x2-mx-1=0 有兩個實根α、β,且α<β.定義函數(shù)f(x)=
2x-m
x2+1

(1)求αf(α)+βf(β) 的值;
(2)判斷f(x) 在區(qū)間(α,β) 上的單調(diào)性,并加以證明;
(3)若λ,μ 為正實數(shù),求證:|f(
λα+μβ
λ+μ
)-f(
μα+λβ
λ+μ
)|<|f(α)-f(β)|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z是復(fù)數(shù),z+i和
z1-i
都是實數(shù)
,(1)求復(fù)數(shù)z;(2)設(shè)關(guān)于x的方程x2+x(1+z)-(3m-1)i=0有實根,求純虛數(shù)m.

查看答案和解析>>

同步練習(xí)冊答案