【題目】已知函數(shù)

(1)若,求的值;

(2)若存在,使函數(shù)的圖像在點(diǎn)和點(diǎn)處的切線互相垂直,求的取值范圍;

(3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),則是否存在實(shí)數(shù),使對(duì)任意的恒成立?若存在,求出的取值范圍,若不存在,說(shuō)明理由.

【答案】(1);(2);(3)存在,.

【解析】

試題分析:(1)借助題設(shè)條件建立方程求解;(2)借助題設(shè)依據(jù)導(dǎo)數(shù)知識(shí)建立函數(shù)求解;(3)借助題設(shè)條件運(yùn)用二次函數(shù)的知識(shí)建立不等式組探求.

試題解析:

(1)由得,

,解得

(2)函數(shù)的定義域?yàn)?/span>,,

由題意得,即,

整理得,

設(shè),由,得,

則有

設(shè),則上有零點(diǎn),

考慮到,

所以,解得,

所以的取值范圍是

(3)

,由題意,在區(qū)間上有兩個(gè)不同零點(diǎn),

則有,解得

設(shè)函數(shù)的兩個(gè)極值點(diǎn)為,

在區(qū)間上的兩個(gè)不同零點(diǎn),

不妨設(shè),則,

且關(guān)于上遞增,

因此

又由可得

當(dāng)時(shí),遞減;

時(shí),遞增;

當(dāng)時(shí),遞減,

結(jié)合可得

設(shè),

,

所以上遞增,

所以,從而,

所以

,所以存在,使

綜上,存在滿足條件的,的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線

(1)求φ;

(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;

(3)求函數(shù)y=f(x)在區(qū)間上的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列是無(wú)窮數(shù)列,且各項(xiàng)均為互不相同的正整數(shù),其前項(xiàng)和為,數(shù)列滿足.

(1)若,求的值;

(2)若數(shù)列為等差數(shù)列,求;

(3)在(1)的條件下,求證:數(shù)列中存在無(wú)窮多項(xiàng)(按原來(lái)的順序)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校男女籃球隊(duì)各有10名隊(duì)員,現(xiàn)將這20名隊(duì)員的身高繪制成莖葉圖(單位:).男隊(duì)員身高在以上定義為“高個(gè)子”,女隊(duì)員身高在以上定義為“高個(gè)子”,其他隊(duì)員定義為“非高個(gè)子”,按照“高個(gè)子”和“非高個(gè)子”用分層抽樣的方法共抽取5名隊(duì)員.

(1)從這5名隊(duì)員中隨機(jī)選出2名隊(duì)員,求這2名隊(duì)員中有“高個(gè)子”的概率;

(2)求這5名隊(duì)員中,恰好男女“高個(gè)子”各1名隊(duì)員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次綜合素質(zhì)測(cè)試中,共設(shè)有60個(gè)考場(chǎng),每個(gè)考場(chǎng)30名考生,在考試結(jié)束后,為調(diào)查其測(cè)試前的培訓(xùn)輔導(dǎo)情況與測(cè)試成績(jī)的相關(guān)性,抽取每個(gè)考場(chǎng)中座位號(hào)為06的考生,統(tǒng)計(jì)了他們的成績(jī),得到如圖所示的頻率分布直方圖.

問(wèn):

在這個(gè)調(diào)查采樣中,采用的是什么抽樣方法?

估計(jì)這次測(cè)試中優(yōu)秀(80分及以上)的人數(shù);

寫出這60名考生成績(jī)的眾數(shù)、中位數(shù)、平均數(shù)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1的單調(diào)區(qū)間;

2的最大值是,求的值;

3,當(dāng)時(shí),若對(duì)任意,總有成立,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列滿足, .

(1)證明:數(shù)列是等差數(shù)列;

(2)設(shè),數(shù)列的前項(xiàng)和為,對(duì)任意的, 恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若對(duì)于定義在上的連續(xù)函數(shù),存在常數(shù)),使得對(duì)任意的實(shí)數(shù)成立,則稱是回旋函數(shù),且階數(shù)為.

(1)試判斷函數(shù)是否是一個(gè)階數(shù)為1的回旋函數(shù),并說(shuō)明理由;

(2)已知是回旋函數(shù),求實(shí)數(shù)的值;

(3)若回旋函數(shù))在恰有100個(gè)零點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年利潤(rùn)(單位:萬(wàn)元)的影響,對(duì)近5年的宣傳費(fèi)和年利潤(rùn))進(jìn)行了統(tǒng)計(jì),列出了下表:

(單位:千元)

2

4

7

17

30

(單位:萬(wàn)元)

1

2

3

4

5

員工小王和小李分別提供了不同的方案.

(1)小王準(zhǔn)備用線性回歸模型擬合的關(guān)系,請(qǐng)你幫助建立關(guān)于的線性回歸方程;(系數(shù)精確到0.01)

(2)小李決定選擇對(duì)數(shù)回歸模型擬合的關(guān)系得到了回歸方程,并提供了相關(guān)指數(shù).請(qǐng)用相關(guān)指數(shù)說(shuō)明選擇哪個(gè)模型更合適,并預(yù)測(cè)年宣傳費(fèi)為4萬(wàn)元的年利潤(rùn).(精確到0.01)(小王也提供了他的分析分析數(shù)據(jù)

參考公式:相關(guān)指數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為

,參考數(shù)據(jù)

查看答案和解析>>

同步練習(xí)冊(cè)答案