等比數(shù)列{an}中,a2a4=16,則a1a5=( 。
A、4B、16C、-4D、-16
考點:等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由等比數(shù)列的性質(zhì)可得a2a4=a12q4,也可得a1a5=a12q4,代換即可.
解答: 解:設(shè)等比數(shù)列{an}的公比為q,
則a2a4=a1q•a1q3=a12q4=16
∴a1a5=a1•a1q4=a12q4=16
故選:B
點評:本題考查等比數(shù)列的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+bx2+cx+d,圖象如圖,則函數(shù)y=log2(x2+
2
3
bx+
c
3
)
的單調(diào)遞減區(qū)間為(  )
A、[
1
2
,+∞)
B、[3,+∞)
C、[-2,3]
D、(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列式子中,表示殘差平方和的是( 。
A、
n
i=1
(yi-
.
y
2
B、
n
i=1
(yi-
yi
2
C、
n
i=1
y
-
.
y
2
D、
n
i=1
(yi-
.
y
2+
n
i=1
yi
-
.
y
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖程序執(zhí)行后輸出的結(jié)果是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y+kx+2=0與曲線C:ρ=2cosθ有交點,則k的取值范圍是( 。
A、k≤-
3
4
B、k≥-
3
4
C、k∈R
D、k∈R但k≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(x2-2x-3)+(x-3)i(x∈R,i為虛數(shù)單位)為純虛數(shù),則x的值為( 。
A、-1或3B、0C、3D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各式:已知a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則歸納猜測a7+b7=( 。
A、26B、27C、28D、29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形△ABC所在的平面上有一點P,滿足6
AP
=3
AB
+2
AC
,則△PBC與△ABC的面積之比是( 。
A、
1
6
B、
1
2
C、
1
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)列{an}的前{an}項和為n,且2
Sn
=an+1

(1)求數(shù)列{an}的首項a1
(2)求數(shù)列{an}的通項公式;
(3)設(shè)bn=
1
anan+1
,Tn是數(shù)列{bn}的前{an}項和,求使得Tn
m
18
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

同步練習(xí)冊答案