已知點(diǎn)M(,0),橢圓y21與直線yk(x)交于點(diǎn)AB,則ABM的周長為(  )

A4 B8 C12 D16

 

B

【解析】因?yàn)橹本過橢圓的左焦點(diǎn)(,0),所以ABM的周長為|AB||AM||BM|4a8,故選B.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-11練習(xí)卷(解析版) 題型:選擇題

aR)的展開式中x9的系數(shù)是-,則的值為(  )

A1cos 2 B2cos 1 Ccos 21 D1cos 2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評7練習(xí)卷(解析版) 題型:解答題

為備戰(zhàn)2016年奧運(yùn)會,甲、乙兩位射擊選手進(jìn)行了強(qiáng)化訓(xùn)練.現(xiàn)分別從他們的強(qiáng)化訓(xùn)練期間的若干次平均成績中隨機(jī)抽取8次,記錄如下:

甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;

乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.

(1)畫出甲、乙兩位選手成績的莖葉圖;

(2)現(xiàn)要從中選派一人參加奧運(yùn)會封閉集訓(xùn),從統(tǒng)計(jì)學(xué)角度,你認(rèn)為派哪位選手參加合理?簡單說明理由;

(3)若將頻率視為概率,對選手乙在今后的三次比賽成績進(jìn)行預(yù)測,記這三次成績中不低于8.5分的次數(shù)為ξ,求ξ的分布列及均值E(ξ)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評6練習(xí)卷(解析版) 題型:解答題

已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,它的一個(gè)頂點(diǎn)為拋物線x24y的焦點(diǎn).

(1)求橢圓方程;

(2)若直線yx1與拋物線相切于點(diǎn)A,求以A為圓心且與拋物線的準(zhǔn)線相切的圓的方程;

(3)若斜率為1的直線交橢圓于M、N兩點(diǎn),求OMN面積的最大值(O為坐標(biāo)原點(diǎn))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評6練習(xí)卷(解析版) 題型:填空題

若拋物線y22px的焦點(diǎn)坐標(biāo)為(1,0),則準(zhǔn)線方程為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評6練習(xí)卷(解析版) 題型:選擇題

k,-1,b三個(gè)數(shù)成等差數(shù)列,則直線ykxb必經(jīng)過定點(diǎn)(  )

A(1,-2) B(1,2) C(1,2) D(1,-2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評5練習(xí)卷(解析版) 題型:填空題

已知某一多面體內(nèi)接于球構(gòu)成一個(gè)簡單組合體,如果該組合體的正視圖、側(cè)視圖、俯視圖均如圖所示,且圖中的四邊形是邊長為2的正方形,則該球的表面積是________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評4練習(xí)卷(解析版) 題型:填空題

對于正項(xiàng)數(shù)列{an},定義Hn{an}光陰值,現(xiàn)知某數(shù)列的光陰值為Hn,則數(shù)列{an}的通項(xiàng)公式為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評2練習(xí)卷(解析版) 題型:選擇題

函數(shù)yf(x)的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個(gè)不同的數(shù)x1x2,xn,使得,則n的取值范圍為(  )

A{3,4} B{2,3,4} C{3,4,5} D{2,3}

 

查看答案和解析>>

同步練習(xí)冊答案