分析 先分離常數(shù),將原函數(shù)變成f(x)=-1+$\frac{4}{x+2}$,然后根據(jù)單調(diào)性的定義,設(shè)x1>x2>-2,然后作差證明f(x1)<f(x2)即可.
解答 證明:f(x)=$\frac{2-x}{x+2}=\frac{-(x+2)+4}{x+2}=-1+\frac{4}{x+2}$;
設(shè)x1>x2>-2,則:
$f({x}_{1})-f({x}_{2})=\frac{4}{{x}_{1}+2}-\frac{4}{{x}_{2}+2}$=$\frac{4({x}_{2}-{x}_{1})}{({x}_{1}+2)({x}_{2}+2)}$;
∵x1>x2>-2;
∴x2-x1<0,x1+2>0,x2+2>0;
∴f(x1)<f(x2);
∴f(x)在(-2,+∞)上是減函數(shù).
點(diǎn)評 考查函數(shù)單調(diào)性的定義,根據(jù)減函數(shù)定義證明一個函數(shù)為減函數(shù)的方法和過程,作差比較f(x1),f(x2)的方法,分離常數(shù)法的運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 |
f(x) | 0.5 | 2 | 5 | 1 |
A. | 2.5 | B. | 7 | C. | 5.5 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+2sin(A+$\frac{π}{6}$) | B. | 1+2sin(A+$\frac{π}{3}$) | C. | 1+sin(A+$\frac{π}{6}$) | D. | 1+sin(A+$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com