考點:等差數(shù)列的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:令g(x)=f(x)-2,判斷g(x)為奇函數(shù)且為增函數(shù),f(a2-2)=5,f(a2014-4)=-1,即為f(a2-2)-2=3,f(a2014-4)-2=-3,即有g(shù)(a2-2)=-g(a2014-4)=g(4-a2014),由單調(diào)性和等差數(shù)列的性質(zhì)及求和公式,即可計算得到.
解答:
解:函數(shù)f(x)=x
3+x+2即為f(x)-2=x
3+x,
令g(x)=f(x)-2,由g(-x)=-x
3-x=-g(x),
則g(x)為奇函數(shù),
g′(x)=3x
2+1>0,則g(x)遞增.
f(a
2-2)=5,f(a
2014-4)=-1,
即為f(a
2-2)-2=3,f(a
2014-4)-2=-3,
即有g(shù)(a
2-2)=-g(a
2014-4)=g(4-a
2014),
即有a
2-2=4-a
2014,
即a
2+a
2014=6,
則有S2015=
(a
1+a
2015)•2015=
(a
2+a
2014)•2015
=
×6×2015=6045.
故答案為:6045.
點評:本題考查函數(shù)的奇偶性和單調(diào)性的運用:求值,考查等差數(shù)列的性質(zhì)和求和公式的運用,考查運算能力,屬于中檔題.