已知

(Ⅰ)b1,b2,b3的值;

(Ⅱ)設(shè)cnbnbn+1,Sn為數(shù)列{cn}的前n項(xiàng)和,求證:Sn17n;

()求證:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,公比是正數(shù)的等比數(shù)列{bn}的前n項(xiàng)和為Tn,已知a1=1,b1=3,a3+b3=17,T3-S3=12,求{an},{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x.
(Ⅰ)數(shù)列an滿足:a1=1,an+1=f'(an),求數(shù)列an的通項(xiàng)公式;
(Ⅱ)已知數(shù)列bn滿足b1=t>0,bn+1=f(bn)(n∈N*),求數(shù)列bn的通項(xiàng)公式;
(Ⅲ)設(shè)cn=
bn+1bn+1
,數(shù)列{cn}
的前n項(xiàng)和為Sn,若不等式λ<Sn對所有的正整數(shù)n恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}、{bn}中,已知a1=6,b1=4,且bn、an、bn+1成等比數(shù)列,an、bn+1、an+1成等差數(shù)列,(n∈N+
(Ⅰ)求a2、a3、a4及b2、b3、b4,由此猜想{an}、{bn}的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅱ)證明:
1
a1+b1
+
1
a2+b2
+
1
a3+b3
+…+
1
an+bn
7
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•泰安一模)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,公比是正數(shù)的等比數(shù)列{bn}的前n項(xiàng)和為Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15
(Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{cn}滿足a1cn+a2cn-1+…+an-1c2=2n+1-n-2對任意n∈N*都成立;求證:數(shù)列{cn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=1,b1=7,且滿足
an+1=bn-2an
bn+1=3bn-4an
,求
lim
n→∞
an
bn
=( 。

查看答案和解析>>

同步練習(xí)冊答案