解答:解:Ⅰ.由已知b
n、a
n、b
n+1成等比數(shù)列,
a
n、b
n+1、a
n+1成等差數(shù)列,(n∈N
+)
∴2b
n+1=a
n+a
n+1,a
n2=b
n•b
n+1,
∵a
1=6,b
1=4,代入計算得:
a
2=12,a
3=20,a
4=30,b
2=9,b
3=16,b
4=25,
由此猜想a
n=(n+1)(n+2),b
n=(n+1)
2(n∈N
+),
證明:(1)當(dāng)n=1,由上面計算知猜想的結(jié)論成立;
(2)假設(shè)當(dāng)n=k(k>1,k∈N
+)時結(jié)論成立,
即a
k=(k+1)(k+2),b
k=(k+1)
2,
則當(dāng)n=k+1時,由于a
k2=b
k•b
k+1,
∴
bk+1===[(k+1)+1]2∴當(dāng)n=k+1時,結(jié)論b
n=(n+1)
2成立,
又a
k+1=2b
k+1-a
k=2(k+2)
2-(k+1)(k+2)
=(k+2)(k+3)=[(k+1)+1][(k+1)+2]
∴當(dāng)n=k+1時,a
n=(n+1)(n+2)也成立
由(1)(2)所證可知對任意的自然數(shù)n∈N
+,
結(jié)論a
n=(n+1)(n+2),b
n=(n+1)
2都成立;
Ⅱ.因為
==<.
當(dāng)n≥2時,由a
n+b
n=(n+1)(n+2)+(n+1)
2=(n+1)(2n+3)<2n(n+1)
<=(-),
+++<+(-+-++-)=
+(-)<+=證畢.