橢圓(a>b>0)的右焦點為F,其右準線與x軸的交點為A,在橢圓上存在點P滿足線段AP的垂直平分線過點F,則橢圓離心率的取值范圍是
[     ]
A.
B.
C.
D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1、F2為橢圓=1(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓離心率e=,則橢圓的方程是(    )

A.=1                             B.=1

C.=1                             D.=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)

已知橢圓(a>b>0)的離心率e=,連接橢圓的四個頂點得到的菱形的面積為4.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線l與橢圓相交于不同的兩點A、B,已知點A的坐標為(-a,0).

      (i)若,求直線l的傾斜角;

      (ii)若點Q在線段AB的垂直平分線上,且.求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練22練習卷(解析版) 題型:填空題

橢圓Γ: +=1(a>b>0)的左、右焦點分別為F1,F2,焦距為2c.若直線y=(x+c)與橢圓Γ的一個交點滿足∠MF1F2=2MF2F1,則該橢圓的離心率等于    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省南昌市高三第二次模擬測試理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)

(1)已知等差數(shù)列{an}的前n項和為Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),證明;= ;

(2)注意到(1)中Sn與n的函數(shù)關系,我們得到命題:設拋物線x2=2py(p>0)的圖像上有不同的四點A,B,C,D,若xA,xB,xC,xD分別是這四點的橫坐標,且xA+xB=xC+xD,則AB∥CD,判定這個命題的真假,并證明你的結論

(3)我們知道橢圓和拋物線都是圓錐曲線,根據(jù)(2)中的結論,對橢圓+ =1(a>b>0)提出一個有深度的結論,并證明之.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年度新課標高三下學期數(shù)學單元測試4-文科 題型:選擇題

 (2009年濟南模擬)已知橢圓(a>b>0)與雙曲線(m>0,n>0)有相同的焦點(-c,0)和(c,0),若c是a、m的等比中項,n2是2m2與c2的等差中項,則橢圓的離心率是              (    ) 

    A.     B.     C.       D.

 

查看答案和解析>>

同步練習冊答案