已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且它的離心率.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)與圓相切的直線(xiàn)交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿(mǎn)足,求實(shí)數(shù)的取值范圍.

 

【答案】

(1) (2)

【解析】

試題分析:解:(Ⅰ) 設(shè)橢圓的標(biāo)準(zhǔn)方程為  1分

由已知得: 解得 ┈ 4分

所以橢圓的標(biāo)準(zhǔn)方程為:       5分

(Ⅱ) 因?yàn)橹本(xiàn)與圓相切

所以,       6分

代入并整理得: ┈7分

設(shè),則有 

     8分

因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050808504220921986/SYS201305080851050842629837_DA.files/image015.png">, 所以,┈┈ 9分

又因?yàn)辄c(diǎn)在橢圓上, 所以,   10分

                      12分

因?yàn)?   所以                  13分

所以 ,所以 的取值范圍為       14分

考點(diǎn):橢圓的方程,直線(xiàn)與橢圓位置關(guān)系

點(diǎn)評(píng):解決的關(guān)鍵是利用幾何性質(zhì)得到a,b,c的關(guān)系式求解方程,同時(shí)能聯(lián)立方程組來(lái)得到根的關(guān)系,結(jié)合向量的坐標(biāo)得到求解,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在坐標(biāo)原點(diǎn)的橢圓經(jīng)過(guò)直線(xiàn)x-2y-4=0與坐標(biāo)軸的兩個(gè)交點(diǎn),則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn),
( I)求橢圓C的方程;
( I I)問(wèn)是否存在直線(xiàn)l:y=
32
x+t
,使直線(xiàn)l與橢圓C有公共點(diǎn),且原點(diǎn)到直線(xiàn)l的距離為4?若存在,求出l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•麗水一模)已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓過(guò)點(diǎn)P(2,3),且它的離心率e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓(x+1)2+y2=1相切的直線(xiàn)l:y=kx+t交橢圓于M,N兩點(diǎn),若橢圓上一點(diǎn)C滿(mǎn)足
OM
+
ON
OC
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)已知中心在坐標(biāo)原點(diǎn)焦點(diǎn)在x軸上的橢圓C,其長(zhǎng)軸長(zhǎng)等于4,離心率為
2
2

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)E(0,1),問(wèn)是否存在直線(xiàn)l:y=kx+m與橢圓C交于M,N兩點(diǎn),且|ME|=|NE|?若存在,求出k的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在坐標(biāo)原點(diǎn)的雙曲線(xiàn)C的焦距為6,離心率等于3,則雙曲線(xiàn)C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案