【題目】楊輝,字謙光,南宋時期杭州人.在他1261年所著的《詳解九章算法》一書中,輯錄了如圖所示的三角形數(shù)表,稱之為開方作法本源圖,并說明此表引自11世紀(jì)中葉(約公元1050年)賈憲的《釋鎖算術(shù)》,并繪畫了古法七乘方圖”.故此,楊輝三角又被稱為賈憲三角”.楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下:

基于上述規(guī)律,可以推測,當(dāng)時,從左往右第22個數(shù)為_____________.

【答案】253

【解析】

根據(jù),共有個數(shù),則所求為這一行的倒數(shù)第個數(shù),找到每一行倒數(shù)第個數(shù)的規(guī)律,從而得到所求.

當(dāng)時,共有個數(shù),從左往右第個數(shù)即為這一行的倒數(shù)第個數(shù),

觀察可知,每一行倒數(shù)第個數(shù)(從第行,開始)

,,,,

即為,,,,,,

所以當(dāng)時,左往右第個數(shù)為.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

1若展開式中第5項(xiàng),第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開式中二項(xiàng)式系數(shù)最大項(xiàng)

的系數(shù);

2若展開式前三項(xiàng)的二項(xiàng)式系數(shù)和等于79,求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.

1)求直線l的普通方程和圓C的直角坐標(biāo)方程;

2)直線l與圓C交于A,B兩點(diǎn),點(diǎn)P(2,1),求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)寫出曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,已知的公共點(diǎn)分別為,,,當(dāng)時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱各條棱的長度均相等,的中點(diǎn),分別是線段和線段的動點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動時,下列結(jié)論中不正確的是

A. 內(nèi)總存在與平面平行的線段

B. 平面平面

C. 三棱錐的體積為定值

D. 可能為直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點(diǎn)與短軸的一個端點(diǎn)構(gòu)成一個等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)已知過橢圓的左頂點(diǎn)的兩條直線,分別交橢圓,兩點(diǎn),且,求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方形中,,,現(xiàn)將長方形沿對角線折起,使,得到一個四面體,如圖所示.

(1)試問:在折疊的過程中,異面直線能否垂直?若能垂直,求出相應(yīng)的的值;若不垂直,請說明理由;

(2)當(dāng)四面體體積最大時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)直線軸的交點(diǎn)為,經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】癌癥是迄今為止人類尚未攻克的疾病之一,目前,癌癥只能盡量預(yù)防.某醫(yī)學(xué)中心推出了一種抗癌癥的制劑,現(xiàn)對20位癌癥病人,進(jìn)行醫(yī)學(xué)試驗(yàn)測試藥效,測試結(jié)果分為病人死亡病人存活,現(xiàn)對測試結(jié)果和藥物劑量(單位:)進(jìn)行統(tǒng)計(jì),規(guī)定病人在服用(包括)以上為足量,否則為不足量,統(tǒng)計(jì)結(jié)果顯示,這20病人

病人存活的有13位,對病人服用的藥物劑量統(tǒng)計(jì)如下表:

編號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

吸收量/

6

8

3

8

9

5

6

6

2

7

7

5

10

6

7

8

8

4

6

9

已知病人存活,但服用的藥物劑量不足的病人共1位.

1)完成下列列聯(lián)表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認(rèn)為病人存活與服用藥物的劑量足量有關(guān)?

服用藥物足量

服用藥物不足量

合計(jì)

病人存活

1

病人死亡

合計(jì)

20

2)若在該樣本服用藥物劑量不足的病人中隨機(jī)抽取3位,求這三人中恰有1病人存活的概率.

參考數(shù)據(jù):

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

查看答案和解析>>

同步練習(xí)冊答案