設(shè)e1與e2是兩個不共線向量,數(shù)學(xué)公式=3e1+2e2數(shù)學(xué)公式=ke1+e2,數(shù)學(xué)公式=3e1-2ke2,若A、B、D三點共線,則k的值為


  1. A.
    -數(shù)學(xué)公式
  2. B.
    -數(shù)學(xué)公式
  3. C.
    -數(shù)學(xué)公式
  4. D.
    不存在
A
分析:先求出,再由A、B、D三點共線,必存在一個實數(shù)λ,使得,由此等式得到k的方程求出k的值,即可選出正確選項
解答:由題意,A、B、D三點共線,故必存在一個實數(shù)λ,使得
=3+2,=k+=3-2k,
=-=3-2k-(k+)=(3-k)-(2k+1)
∴3+2=λ(3-k)-λ(2k+1)
解得k=-
故選:A.
點評:本題考查向量共線定理,向量減法的三角形法則及利用方程的思想建立方程求參數(shù),解題的關(guān)鍵是理解A、B、D三點共線,利用向量共線定理建立關(guān)于參數(shù)k的方程,向量共線定理的考查是高考熱點,新教材實驗區(qū)高考試卷上每年都有涉及,此類題難度較低,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)e1與e2是兩個不共線向量,
AB
=3e1+2e2,
CB
=ke1+e2,
CD
=3e1-2ke2,若A、B、D三點共線,則k的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
e2
是兩個不共線的非零向量,若向量
AB
=3
e1
-2
e2
,
BC
=-2
e1
+4
e2
,
CD
=-2
e1
-4
e2
,試證明:A、C、D三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)e1與e2是兩個不共線向量,則a=2e1-e2與b=e1-2λe2(λ∈R)共線時,λ的值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)e1與e2是兩個不共線向量,則a=2e1-e2與b=e1-2λe2(λ∈R)共線時,λ的值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)e1e2是兩個不共線向量,a.=3e1+4e2,b=-2e1+5e2,若實數(shù)λ、μ滿足λab=5e1-e2,求λ、μ的值.

查看答案和解析>>

同步練習(xí)冊答案