本小題滿分13分)
如圖,A地到火車站共有兩條路徑 和 ,據統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在各時間段內的頻率如下表:
時間(分鐘) | |||||
的頻率 | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
的頻率 | 0 | 0.1 | 0.4 | 0.4 | 0.1 |
科目:高中數(shù)學 來源: 題型:
(本小題滿分13分)
如圖,在以點O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點,
∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動點M的軌跡,且曲線C過點P。
(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼,求曲線C的方程;
(Ⅱ)設過點D的直線l與曲線C相交于不同的兩點E、F。若△OEF的面積不小于2,求直線l斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009安徽卷文)(本小題滿分13分)
如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個不同點,且EA=ED,F(xiàn)B=FC, 和是平面ABCD內的兩點,和都與平面ABCD垂直,
(Ⅰ)證明:直線垂直且平分線段AD:.
(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面
體ABCDEF的體積。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年江西省新余一中 宜春中學 高安中學高二上學期第三次階段考試理科數(shù)學卷 題型:解答題
(本小題滿分13分)
如圖,正三棱柱ABC-A1B1C1的底面邊長是2,D是側棱CC1的中點,直線AD與側面BB1C1C所成的角為45°.
(1)求此正三棱柱的側棱長;
(2)求平面ABD與平面CBD夾角的余弦;
(3)求點C到平面ABD的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江西省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)如圖(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分別為AC ,AD ,DE的中點,現(xiàn)將△ACD沿CD折起,使平面ACD平面CBED,如圖(乙).
(1)求證:平面FHG//平面ABE;
(2)記表示三棱錐B-ACE 的體積,求的最大值;
(3)當取得最大值時,求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆山東省高二下學期期末考試文科數(shù)學 題型:解答題
(本小題滿分13分)
如圖,過拋物線(>0)的頂點作兩條互相垂直的弦OA、OB。
⑴設OA的斜率為k,試用k表示點A、B的坐標;
⑵求弦AB中點M的軌跡方程。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com