【題目】如圖,已知A,B,C為直角坐標系xOy中的三個定點

(Ⅰ)若點D為ABCD的第四個頂點,求||;

(Ⅱ)若點P在直線OC上,且·=4,求點P的坐標.

【答案】(1).(2)(-1,1)或(4,-4).

【解析】試題分析:(1)由圖得到點的坐標,根據(jù)點點距得到||=;(2)根據(jù)向量坐標化得到·=(5+2λ)(1+2λ)+(3-2λ)(-3-2λ)=4,解得λ=-2,從而得到點的坐標.

解析:

(I)由圖可知A(5,3),B(1,-3),C(-2,2),

所以,B=(4,6),BC=(-3,5),所以,||=|+|==.

(Ⅱ)因為點P在直線OC上,所以可設(shè)=(-2λ,2λ),

所以,=(5+2λ,3-2λ),=(1+2λ,-3-2λ),

所以,·=(5+2λ)(1+2λ)+(3-2λ)(-3-2λ)=4,解得λ=或-2.

故點P的坐標為(-1,1)或(4,-4).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當時函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域為,解不等式.

【答案】(1)奇函數(shù)(2)增函數(shù)(3)

【解析】試題分析:1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),

原不等式變形為f(2x-1)<-f(x),f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。

試題解析:1)函數(shù)為奇函數(shù).證明如下:

定義域為

為奇函數(shù)

2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:

任取,則

在(-1,1)上為增函數(shù)

3由(1)、(2)可得

解得:

所以,原不等式的解集為

點睛

(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。

(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號,下結(jié)論五個步驟。

型】解答
結(jié)束】
22

【題目】已知函數(shù).

(1)若的定義域和值域均是,求實數(shù)的值;

(2)若在區(qū)間上是減函數(shù),且對任意的,都有,求實數(shù)的取值范圍;

(3)若,且對任意的,都存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題: ①x0∈R,ln(x02+1)<0;
x>2,x2>2x
α,β∈R,sin(α﹣β)=sin α﹣sin β;
④若q是¬p成立的必要不充分條件,則¬q是p成立的充分不必要條件.
其中真命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 則( )
A.對于任意正實數(shù)x恒有f(x)≥g(x)
B.存在實數(shù)x0 , 當x>x0時,恒有f(x)>g(x)
C.對于任意正實數(shù)x恒有f(x)≤g(x)
D.存在實數(shù)x0 , 當x>x0時,恒有f(x)<g(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查中小學課外使用互聯(lián)網(wǎng)的情況,教育部向華東、華北、華南和西部地區(qū)60所中小學發(fā)出問卷份, 名學生參加了問卷調(diào)查,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如圖).

(1)要從這名中小學中用分層抽樣的方法抽取名中小學生進一步調(diào)查,則在(小時)時間段內(nèi)應抽出的人數(shù)是多少?

(2)若希望的中小學生每天使用互聯(lián)網(wǎng)時間不少于(小時),請估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當x≥0時,
f(x)= ,
則關(guān)于x的函數(shù)F(x)=f(x)﹣a(0<a<1)的所有零點之和為( 。
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】英格蘭足球超級聯(lián)賽,簡稱英超,是英國足球最高等級的職業(yè)足球聯(lián)賽,也是世界最高水平的職業(yè)足球聯(lián)賽之一,目前英超參賽球隊有20個,在2014-2015賽季結(jié)束后將各隊積分分成6段,并繪制出了如圖所示的頻率分布直方圖(圖中各分組區(qū)間包括左端點,不包括右端點,如第一組表示積分在[30,40)內(nèi)).根據(jù)圖中現(xiàn)有信息,解答下面問題:

(Ⅰ)求積分在[40,50)內(nèi)的頻率,并補全這個頻率分布直方圖;

(Ⅱ)從積分在[40,60)中的球隊中任選取2個球隊,求選取的2個球隊的積分在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)為奇函數(shù),當x≥0時,f(x)= .g(x)= ,
(1)求當x<0時,函數(shù)f(x)的解析式,并在給定直角坐標系內(nèi)畫出f(x)在區(qū)間[﹣5,5]上的圖象;(不用列表描點)

(2)根據(jù)已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在區(qū)間[﹣2,t](t>﹣2)上的函數(shù)f(x)=(x2﹣3x+3)ex(其中e為自然對數(shù)的底).
(1)當t>1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)設(shè)m=f(﹣2),n=f(t),求證:m<n;
(3)設(shè)g(x)=f(x)+(x﹣2)ex , 當x>1時,試判斷方程g(x)=x的根的個數(shù).

查看答案和解析>>

同步練習冊答案