15.若函數(shù)f(x)的定義域?yàn)閇-3,1],則函數(shù)g(x)=f(x+1)的定義域?yàn)閇-4,0].

分析 由已知函數(shù)的定義域,可得-3≤x+1≤1,求解不等式得答案.

解答 解:∵函數(shù)f(x)的定義域?yàn)閇-3,1],
∴由-3≤x+1≤1,得-4≤x≤0.
∴函數(shù)g(x)=f(x+1)的定義域?yàn)閇-4,0].
故答案為:[-4,0].

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,關(guān)鍵是掌握該類問(wèn)題的求解方法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.正方體ABCD-A1B1C1D1中直線BC1與平面BB1D1D所成角的余弦值是( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.以點(diǎn)(0,3)為焦點(diǎn)的曲線是(  )
A.$\frac{y^2}{5}+\frac{x^2}{4}=1$B.$\frac{x^2}{12}+\frac{y^2}{3}=1$C.x2=-12yD.$\frac{y^2}{6}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知?jiǎng)狱c(diǎn)P在直線x+y=6上,若過(guò)點(diǎn)P的直線l與圓x2+y2=2相切,切點(diǎn)為A,則P,A兩點(diǎn)之間的距離的最小值是( 。
A.3$\sqrt{2}$B.2$\sqrt{5}$C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在樣本方差的計(jì)算公式S2=$\frac{1}{20}$[(x1-40)2+(x2-40)2+…+(x20-40)2]中,數(shù)字20,40分別表示樣本的(  )
A.容量,方差B.容量,平均數(shù)C.平均數(shù),容量D.標(biāo)準(zhǔn)差,平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.對(duì)于簡(jiǎn)單隨機(jī)抽樣,下列說(shuō)法中正確的為( 。
①它要求被抽取樣本的總體的個(gè)數(shù)有限,以便對(duì)其中各個(gè)個(gè)體被抽取的概率進(jìn)行分析;
②它是從總體中按排列順序逐個(gè)地進(jìn)行抽;
③它是一種不放回抽樣;
④它是一種等概率抽樣,不僅每次從總體中抽取一個(gè)個(gè)體時(shí),各個(gè)個(gè)體被抽取的概率相等,
而且在整個(gè)抽樣過(guò)程中,各個(gè)個(gè)體被抽取的概率也相等,從而保證了這種方法抽樣的公平性.
A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:a1=3,$\frac{{a}_{n+1}+{a}_{n}}{n+1}$=$\frac{8}{{a}_{n+1}-{a}_{n}}$(n∈N*),設(shè)bn=$\frac{1}{{a}_{n}}$,Sn=b12+b22+…+bn2
(1)求數(shù)列{an}通項(xiàng)公式;
(2)求證:Sn$<\frac{1}{4}$;
(3)若數(shù)列{cn}滿足cn=3n+(-1)n-1•2n•λ(λ為非零常數(shù)),確定λ的取值范圍,使n∈N*時(shí),都有cn+1>cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=ax-xlna(a>l),g(x)=b-$\frac{3{x}^{2}}{2}$,e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=e,b=5時(shí),求方程f(x)=g(x)的解的個(gè)數(shù);
(2)若存在x1,x2∈[-l,1]使得f(x1)+g(x2)+$\frac{1}{2}$≥f(x2)=g(x1)+e成立,求實(shí)數(shù)a的取值范圍.[注:(ax)′=axlna].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)y=f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,等式f(x)•f(y)=f(x+y)成立,若數(shù)列{an}滿足f(an+1)=$\frac{1}{f(\frac{1}{1+{a}_{n}})}$,(n∈N+)且a1=f(0),則下列結(jié)論成立的是( 。
A.a2013>a2016B.a2014<a2016C.a2014>a2015D.a2016>a2015

查看答案和解析>>

同步練習(xí)冊(cè)答案