方程x2-2ax+4=0的兩根均大于1,則實數(shù)a的范圍是 ______.
解法一:利用韋達定理,設(shè)方程x2-2ax+4=0的兩根為x1、x2,
(x1-1)(x2-1)>0
(x1-1)+(x2-1)>0
△≥0
4-2a+1>0
2a-2>0
4a 2-16>0

解之得  2≤a<
5
2

解法二:利用二次函數(shù)圖象的特征,設(shè)f(x)=x2-2ax+4,
△≥0
f(1)>0
a>1
4a 2-16>0
1-2a+4>0
a>1
解之得2≤a<
5
2

故應(yīng)填   2≤a<
5
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

方程x2-2ax+4=0的兩根均大于1,則實數(shù)a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程x2-2ax+4=0在區(qū)間(1,2]上有且僅有一個根,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2+2ax-4=0的兩個實根x1、x2滿足x1<1<x2,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p關(guān)于x的方程x2+2ax+4=0無實數(shù)解;命題q:函數(shù)f(x)=(3-2a)x是增函數(shù),若p∨q為真,p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)y=logax在(0,+∞)上是增函數(shù);命題q:關(guān)于x的方程x2-2ax+4=0有實數(shù)根.若p∧q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案